随笔分类 -  机器学习

摘要:理解反向传播 要理解反向传播,先来看看正向传播。下面是一个神经网络的一般结构图: 其中,\(x\) 表示输入样本,\(\bm{w}\) 表示未知参数(图中未标出偏置 \(b\)), \(S\) 表示激活函数,\(y\) 表示预测值,\(\hat{y}\) 表示真实值。 显然,通过从样本 \(x\) 阅读全文
posted @ 2021-09-06 15:10 dev-liu 阅读(1077) 评论(0) 推荐(1)
摘要:之前写的线性回归,充斥了大量的公式,对于入门来说显得过于枯燥,所以打算重写这一部分,而了解了线性回归后,它又可以为我们解释深度学习的由来。 一、机器学习简述 机器学习可以理解为计算机根据给定的问题及数据进行学习,并可根据学习结果解决同类型的问题。可以把机器学习比作一个函数,把我们已知的数据输入进去, 阅读全文
posted @ 2021-08-16 11:22 dev-liu 阅读(1391) 评论(0) 推荐(1)
摘要:简介 朴素贝叶斯是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素贝叶斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素贝叶斯适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心思想 每个样 阅读全文
posted @ 2021-08-05 17:51 dev-liu 阅读(408) 评论(0) 推荐(0)
摘要:k-means简介 k-means是无监督学习下的一种聚类算法,简单说就是不需要数据标签,仅靠特征值就可以将数据分为指定的几类。k-means算法的核心就是通过计算每个数据点与k个质心(或重心)之间的距离,找出与各质心距离最近的点,并将这些点分为该质心所在的簇,从而实现聚类的效果。 k-means具 阅读全文
posted @ 2021-08-04 14:48 dev-liu 阅读(1577) 评论(0) 推荐(0)
摘要:之前对线性回归和逻辑回归的理论部分做了较为详细的论述,下面通过一些例子再来巩固一下之前所学的内容。 需要说明的是,虽然我们在线性回归中都是直接通过公式推导求出w和b的精确值,但在实际运用中基本上都会采用梯度下降法作为首选,因为用代码表示公式会比较繁琐,而梯度下降法只需要不断对参数更新公式进行迭代即可 阅读全文
posted @ 2021-08-03 21:25 dev-liu 阅读(447) 评论(0) 推荐(0)
摘要:什么是线性回归? 根据样本数据的分布特点,通过线性关系模拟数据分布趋势,从而进行预测。对于下图来说,样本点的连线大致接近于一条直线,所以就可以将函数模拟成线性方程。 设 f(x) = wx + b,所以只要求出w 和 b,就可以得到x与y的关系,从而能够根据x预测出对应的y。 要求 w 和 b,只能 阅读全文
posted @ 2021-08-02 12:23 dev-liu 阅读(1187) 评论(0) 推荐(1)
摘要:决策树,听名字就知道跟树有关,而且很容易猜到是一种类似依靠树形结构来辅助决策过程的策略。所以重点就是如何构建这个树,如何依次选取树的各个节点,以便能在测试集中有较好的表现。 信息熵与信息增益 说到如何选取节点,就要引入信息熵的概念。我以前一看到“熵”这个字就头疼,以为是跟高深的物理学相关,其实很好理 阅读全文
posted @ 2021-07-25 23:56 dev-liu 阅读(341) 评论(0) 推荐(1)