随笔分类 - Machine Learning
摘要:1. 简单线性回归介绍: 回归(regression) Y变量为连续数值型(continuous numerical variable) 回归(regression) Y变量为连续数值型(continuous numerical variable) 如:房价,人数,降雨量 分类(Classifica
阅读全文
摘要:假设有N个待聚类的样本,对于层次聚类来说,步骤: 1、(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度; 2、寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了一个); 3、重新计算新生成的这个类与各个旧类之间的相似度; 4、重复2和3直到所有样本点都归
阅读全文
摘要:1.归类: 聚类(clustering) 属于非监督学习 (unsupervised learning) 无类别标记(class label) 2.举例: 3. K-means 算法: 3.1 Clustering 中的经典算法,数据挖掘十大经典算法之一 3.2 算法接受参数 k ;然后将事先输入的
阅读全文
摘要:1. 背景: 1.1 以人脑中的神经网络为启发,历史上出现过很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多层向前神经网络(Multilayer Feed-Forward Neural Network) 2.1 Backpropagation被使用在多层向前
阅读全文
摘要:例子: 求未知电影属于什么类型: 算法介绍: 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别 细节: 关于K的
阅读全文
摘要:决策树: 判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根节点。 一个根据天气情况判断是否适宜户外运动的决策树示例: 熵(entropy)概念: 信息和抽象,如何度量? 1948年,香农提出了 ”信息熵
阅读全文

浙公网安备 33010602011771号