调和叶状结构--一个有趣的公式(观点)

\[E(\mathcal{F})=\frac{1}{2}||\pi||^2= \frac{1}{2} \int _M g_Q(\pi\wedge * \pi) \]

Theorem: Let \(\mathcal{F}\) be a foliation on a manifold \(M\) and \(g_M\) a Riemannian metric. Then all the leaves of the foliation are minimal submanifolds of \(M\) if and only if the canonical \(Q\) -valued 1-form $\pi : TM \to Q $ is harmonic.

Kamber, F.W., Tondeur, P. (1982). Harmonic foliations

posted @ 2024-07-11 22:56  LiuH41  阅读(40)  评论(0)    收藏  举报