P10068 [CCO 2023] Line Town
考察符号的变化,如果是一正一负那么不会变,否则是两位一起奇偶翻转。把奇数位的符号翻转后,每个数可以认为是一个绝对值和符号的二元组。
对于序列最终的形态,其一定是一段负然后一些 \(0\) 再一段正,翻转后就是一段前缀 \(+-+-\cdots\),一段后缀 \(+-+-\cdots +(-)\),最后一位的正负号已知。同时前缀的绝对值递减,后缀的绝对值递增。注意前缀和后缀可以为空。
考虑按绝对值从大往小插数,同时记录 \(f_{0/1,0/1}\) 为当前序列左右分别要求的符号。
转移枚举分别有多少个数放在左右。贡献可以拆成距离和,同侧贡献和异侧贡献。变化量可以用 \(O(1)\) 次二分计算,写起来较为复杂。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int> ;
const int kN = 5e5 + 5;
int n;
pii a[kN];
int ord[kN];
ll f[2][2];
struct BIT {
int tr[kN];
void Clear() {
fill_n(tr, n + 3, 0);
}
void Update(int x, int v) {
for(; x <= n; x += (x & -x)) tr[x] += v;
}
int Query(int x) {
int ans = 0;
for(; x; x &= (x - 1)) ans += tr[x];
return ans;
}
}bit;
void DP(int N, int l, int r) {
vector<int> v[2];
int dif = 0;
for(int i = l; i <= r; i++) {
int x = ord[i];
bool f = a[x].second;
v[f].push_back(bit.Query(x));
f ? dif++ : dif--;
}
auto Calc = [&](int fs, int ft, int ns, int nt) -> ll {
deque<int> p[2], q[2];
int c[2][2];
c[0][0] = v[0].size();
c[0][1] = 0;
c[1][0] = v[1].size();
c[1][1] = 0;
auto P = [&](bool f, int c) -> int {
return f ? N - (2 * c - 1) + ft : N - 2 * (c - 1) - ft;
};
auto S = [&](bool f, int i, bool g) -> int {
return g ? v[f][i + c[f][0]] : v[f][i];
};
auto T = [&](bool f, int i, bool g) -> int {
return g ? q[f][i] : p[f][i];
};
for(int i = 0; i < c[0][0]; i++) {
p[0].push_back(fs + 1 + 2 * i);
}
for(int i = 0; i < c[1][0]; i++) {
p[1].push_back(2 - fs + 2 * i);
}
if(ft != nt) {
c[ft][0]--, c[ft][1]++;
p[ft].pop_back();
q[ft].push_front(P(ft, c[ft][1]));
}
ll ans = 1e18;
ll cost = 0;
for(int i : {0, 1}) {
for(int j = 0; j < c[i][0]; j++) {
cost += v[i][j] - p[i][j];
}
for(int j = 0; j < c[i][1]; j++) {
cost += q[i][j] - v[i][j + c[i][0]];
}
}
for(int f : {0, 1}) for(int g : {0, 1}) for(int h : {0, 1}) {
for(int i = 0; i < c[g][f]; i++) {
int si = S(g, i, f), ti = T(g, i, f);
int l = -1, r = c[!g][h], p = r;
while(l + 1 < r) {
int mid = (l + r) >> 1;
(S(!g, mid, h) >= si) ? (p = r = mid) : (l = mid);
}
l = -1, r = c[!g][h];
while(l + 1 < r) {
int mid = (l + r) >> 1;
(T(!g, mid, h) <= ti) ? (l = mid) : (r = mid);
}
int cnt = max(l - p + 1, 0);
(f == h) ? (cost += cnt) : (cost -= cnt);
}
}
while(1) {
ans = min(ans, cost);
if(!c[0][0] || !c[1][0]) break;
{
int i = c[0][0] - 1;
int j = c[1][0] - 1;
int si = S(0, i, 0), ti = T(0, i, 0);
int sj = S(1, j, 0), tj = T(1, j, 0);
cost += ((si <= sj) && (ti >= tj));
cost += ((si >= sj) && (ti <= tj));
}
for(int f : {0, 1}) for(int g : {0, 1}) {
int i = c[f][0] - 1;
int si = S(f, i, 0), ti = T(f, i, 0);
int l = -1, r = c[!f][g];
while(l + 1 < r) {
int mid = (l + r) >> 1;
(S(!f, mid, g) >= si) ? (r = mid) : (l = mid);
}
int pl = l, pr = r;
l = -1, r = c[!f][g];
while(l + 1 < r) {
int mid = (l + r) >> 1;
(T(!f, mid, g) <= ti) ? (l = mid) : (r = mid);
}
int v = max(l - pr + 1, 0) + max(pl - r + 1, 0);
g ? cost += v : cost -= v;
}
for(int t : {0, 1}) {
cost -= v[t][c[t][0] - 1] - p[t][c[t][0] - 1];
c[t][0]--, c[t][1]++;
p[t].pop_back();
q[t].push_front(P(t, c[t][1]));
cost += q[t][0] - v[t][c[t][0]];
}
{
int i = 0;
int j = 0;
int si = S(0, i, 1), ti = T(0, i, 1);
int sj = S(1, j, 1), tj = T(1, j, 1);
cost -= ((si <= sj) && (ti >= tj));
cost -= ((si >= sj) && (ti <= tj));
}
for(int f : {0, 1}) for(int g : {0, 1}) {
int i = 0;
int si = S(f, i, 1), ti = T(f, i, 1);
int l = -1, r = c[!f][g];
while(l + 1 < r) {
int mid = (l + r) >> 1;
(S(!f, mid, g) >= si) ? (r = mid) : (l = mid);
}
int pl = l, pr = r;
l = -1, r = c[!f][g];
while(l + 1 < r) {
int mid = (l + r) >> 1;
(T(!f, mid, g) <= ti) ? (l = mid) : (r = mid);
}
int v = max(l - pr + 1, 0) + max(pl - r + 1, 0);
g ? cost += v : cost -= v;
}
}
return ans;
};
ll tf[2][2];
memcpy(tf, f, sizeof(tf));
memset(f, 0x3f, sizeof(f));
for(int fs : {0, 1}) for(int ft : {0, 1}) {
if(tf[fs][ft] > 1e16) continue;
for(int ns : {0, 1}) for(int nt : {0, 1}) {
int nd[2] = {0, 0};
if(fs != ns) nd[fs]++;
if(ft != nt) nd[ft]++;
if(nd[1] - nd[0] != dif) continue;
f[ns][nt] = min(f[ns][nt], tf[fs][ft] + Calc(fs, ft, ns, nt));
}
}
for(int i = l; i <= r; i++) bit.Update(ord[i], -1);
}
int main() {
// freopen("1.in", "r", stdin);
// freopen("1.out", "w", stdout);
ios::sync_with_stdio(0), cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) {
int x;
cin >> x;
a[i] = pii {abs(x), (x > 0) ^ (i & 1)};
}
iota(ord + 1, ord + n + 1, 1);
stable_sort(ord + 1, ord + n + 1,
[&](int x, int y) { return a[x] > a[y]; });
for(int i = 1; i <= n; i++) bit.Update(i, 1);
memset(f, 0x3f, sizeof(f));
f[1][(n & 1) ^ 1] = 0;
for(int rem = n, l = 1, r; l <= n; l = r + 1) {
pii val = a[ord[l]];
if(!val.first) break;
for(r = l; r < n; r++) {
pii nxt = a[ord[r + 1]];
if(val.first != nxt.first) break;
}
DP(rem, l, r);
rem -= (r - l + 1);
}
ll ans = 1e18;
for(int i : {0, 1}) {
for(int j : {0, 1}) ans = min(ans, f[i][j]);
}
cout << ((ans > 1e16) ? -1 : ans) << "\n";
return 0;
}
浙公网安备 33010602011771号