# 【2019.8.6 慈溪模拟赛 T3】集合（set）（线段树上DP）

### 代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 200000
#define V 1000000000
#define LV 30
#define LL long long
#define INF 1e18
#define min(x,y) ((x)<(y)?(x):(y))
#define Gmin(x,y) (x>(y)&&(x=(y)))
using namespace std;
int n,Qt,a[2*N+5];
class FastIO
{
private:
#define FS 100000
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
#undef D
}F;
class SegmentTreeSolver
{
private:
template<int SZ> class SegmentTree//线段树
{
private:
#define F5(x,l,r)\
O[x].f[l][r]=O[O[x].S[0]].f[l][1]+O[O[x].S[1]].f[1][r],\
Gmin(O[x].f[l][r],O[O[x].S[0]].f[l][0]+O[O[x].S[1]].f[0][r]+O[O[x].S[1]].L-O[O[x].S[0]].R),\
Gmin(O[x].f[l][r],O[O[x].S[0]].f[l][0]+O[O[x].S[1]].f[1][r]+O[O[x].S[1]].L-O[O[x].S[0]].R),\
Gmin(O[x].f[l][r],O[O[x].S[0]].f[l][1]+O[O[x].S[1]].f[0][r]+O[O[x].S[1]].L-O[O[x].S[0]].R)//普通情况下转移
int n,rt,Nt;struct node//维护节点信息
{
int Ex,L,R,S[2];LL f[2][2];
I node(CI x=0):Ex(0),L(x),R(x),S({0,0}),f({{0,INF},{INF,INF}}){}
I void operator = (Con node& o)
{
Ex=o.Ex,L=o.L,R=o.R,f[0][0]=o.f[0][0],f[0][1]=o.f[0][1],
f[1][0]=o.f[1][0],f[1][1]=o.f[1][1];
}
}O[SZ+5];
I void PU(CI x)//上传信息
{
if(!O[O[x].S[0]].Ex) return (void)(O[x]=O[O[x].S[1]]);//如果没有左儿子
if(!O[O[x].S[1]].Ex) return (void)(O[x]=O[O[x].S[0]]);//如果没有右儿子
O[x].Ex=1,O[x].L=O[O[x].S[0]].L,O[x].R=O[O[x].S[1]].R;//上传基础信息
if(O[O[x].S[0]].L==O[O[x].S[0]].R&&O[O[x].S[1]].L==O[O[x].S[1]].R)//合并两个单点
{
O[x].f[0][0]=0,O[x].f[1][1]=O[O[x].S[1]].L-O[O[x].S[0]].R,
O[x].f[0][1]=O[x].f[1][0]=INF;return;
}
if(O[O[x].S[0]].L==O[O[x].S[0]].R)//合并单点和区间
{
O[x].f[1][0]=min(O[O[x].S[1]].f[0][0],O[O[x].S[1]].f[1][0])+O[O[x].S[1]].L-O[O[x].S[0]].R,
O[x].f[1][1]=min(O[O[x].S[1]].f[0][1],O[O[x].S[1]].f[1][1])+O[O[x].S[1]].L-O[O[x].S[0]].R,
O[x].f[0][0]=O[O[x].S[1]].f[1][0],O[x].f[0][1]=O[O[x].S[1]].f[1][1];return;
}
if(O[O[x].S[1]].L==O[O[x].S[1]].R)//合并区间和单点
{
O[x].f[0][1]=min(O[O[x].S[0]].f[0][0],O[O[x].S[0]].f[0][1])+O[O[x].S[1]].L-O[O[x].S[0]].R,
O[x].f[1][1]=min(O[O[x].S[0]].f[1][0],O[O[x].S[0]].f[1][1])+O[O[x].S[1]].L-O[O[x].S[0]].R,
O[x].f[0][0]=O[O[x].S[0]].f[0][1],O[x].f[1][0]=O[O[x].S[0]].f[1][1];return;
}
F5(x,0,0),F5(x,0,1),F5(x,1,0),F5(x,1,1);
}
I void Upt(CI x,CI v,CI l,CI r,int& rt)//单点修改
{
if(!rt&&(rt=++Nt),l==r) return (void)(!O[rt].Ex&&(O[rt]=node(l),0),O[rt].Ex+=v);
RI mid=l+r>>1;x<=mid?Upt(x,v,l,mid,O[rt].S[0]):Upt(x,v,mid+1,r,O[rt].S[1]),PU(rt);
}
public:
I void Init(CI _n) {n=_n;}I void Upt(CI x,CI v) {Upt(x,v,1,n,rt);}
I LL Qry() {return O[rt].f[1][1];}//询问
};SegmentTree<N*LV> S;
public:
I void Solve()
{
RI i,op,x;for(S.Init(V),i=1;i<=n;++i) S.Upt(a[i],1);//初始化
}