ANNOVA test (one-way test and two-way test and bootstrapping)

对于ANNOVA的理解

什么情况下可以使用annova:

  1. More than 2 populations
    对于多种不同药物对于某种疾病的效果的研究;比较不同国家指标的研究
  2. More than 1 predictive variable (factor)
    锻炼和饮食对于健康的影响; effect of genetic background and drugs on stress levels
  3. 如果是多way test
    2-way test: 2 factors, 比如effect of age and sex on salary

One-way annova

Null hypothesis: means of different <> groups are the same (老师标准写法)
或者说
Null hypothesis: There is no effects of class attendance or previous grades on course performance
Alternative hypothesis: means of different <> groups are not the same

核心思想:组内差异对比组间差异,如果这两者差异大就说明组内之间确实有差异;否则可以认为没有什么组间差异

统计前假设条件:

  1. Independent random sampling
    We believe that this is true given the description of the experiment itself
  2. normality of residuals (distance from group mean)
model <- aov(grade ~ attendance * previous_grades) # 这个地方,老师似乎认为没有理由能不使用interaction
hist((resid(model), main = "residuals")# 选一个,方法一
shapiro.test(resid(model)) #方法二
  1. Equality of variances
    通过作图,“residuals vs fitted” plot进行查看
plot(model,1)

好的情况:

接下来查看统计量

summary(model)

实例结果:
Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 4.46 2.228 1.064 0.353
Measurement 1 2.05 2.049 0.979 0.328
Residuals 47 98.39 2.093

进行完ANNOVA 测试后,如果还想要知道具体是哪一组不同于另外几组,可以采用post-hoc tests。比如Tukey's HSD test

TukeyHSD(model)

如果想要探索,也可以思考两个factor之间是否有interaction, hypotheses变化:
• H0: There is no interaction between class attendance and previous grades
• HA: There is an interaction between class attendance and previous grades

posted @ 2024-05-22 22:57  chen生信  阅读(137)  评论(0)    收藏  举报