摘要:
这题分三步:葺网(期望)、淀粉质(点分治)、蓉翅(容斥),再佐以芬芳团(FFT),一道巨难无比的 luogu 黑题就诞生了。 期望 先考虑在淀粉树上,\(i\) 点在 \(j\) 点的子树里的概率。实际上这个问题的每种情况相当于是 \(n\) 个点的各种排列方式。这也就相当于,我们在选择 \(j\) 阅读全文
posted @ 2025-01-18 21:25
长安一片月_22
阅读(20)
评论(0)
推荐(0)
摘要:
容易发现: \[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(i-j)^2} \]不妨设 \(a_i=q_i,b_i=\dfrac 1{i^2}\): \[E_i=\sum_{j=1}^{i-1}a_jb_{i-j 阅读全文
posted @ 2025-01-18 14:57
长安一片月_22
阅读(11)
评论(0)
推荐(0)
摘要:
看名字,然后准备转化为多项式乘法。 \[c_k=\sum_{i=0}^{n-k-1}a_{i+k}b_i \]将 \(a\) 反转,得: \[c_k=\sum_{i=0}^{n-k-1}a_{n-i-k-1}b_i \]这已经是多项式乘法的格式了,直接多项式乘法,最后对函数 \(c\) 的 \(0\ 阅读全文
posted @ 2025-01-18 11:55
长安一片月_22
阅读(17)
评论(0)
推荐(0)
摘要:
注:由于发现 FWT 解决的问题和 FFT,NTT 差别有点大,加之 FMT 的存在,本文就只解决 FFT 和 NTT,剩下两个放在别的算法总结里讲。 多项式一向是算法竞赛中相当博大精深的东西,作为一个蒟蒻,我将会以最大的努力完成这篇记录,以防自己以后看不懂qwq。 FFT(快速傅里叶变换) FFT 阅读全文
posted @ 2025-01-18 11:01
长安一片月_22
阅读(40)
评论(0)
推荐(0)

浙公网安备 33010602011771号