对于浙江2017年高考最后一题的探究

(1)先证明\(x_n>0\),使用归纳法,假设\(x_n>0\)\(x_n=x_{n+1}+\ln(1+x_{n+1})\)
\(f(x)=x+\ln(1+x),f'(x)=1+\frac{1}{1+x}>0,f(x)\)\((0,+\inf)\)单调递增
\(f(0)=0,x_n>0,f(x_{n+1})=x_n>f(0)>0\)
再证明\(x_n>x_{n+1},x_n-x_{n+1}=\ln(1+x_{n+1}),x_{n+1}+1>1\)所以\(x_n-x_{n+1}>0,x_n>x_{n+1}\)
(2)\(2x_{n+1}-x_n<\frac{x_nx_{n+1}}{2},x_n=x_{n+1}+\ln(1+x_{n+1})\)
所以要证\(x_{n+1}-\ln(1+x_{n+1})<\frac{x_{n+1}^2+x_{n+1}\ln(1+x_{n+1})}{2},x_{n+1}^2+(x_{n+1}+2)\ln(1+x_{n+1})-2x_{n+1}>0\)
构造\(g(x)=x^2-2x+(x+2)\ln(x+1),g'(x)=2x-1+\frac{1}{x+1}+ln(x+1),g''(x)=2+\frac{1}{x+1}-\frac{1}{(x+1)^2}\)
\(x>0,g''(x)=(x+2)(2x+1)>0\)所以\(g'(x)\)\((0,+\inf)\)单调递增
\(g'(0)=0\),所以当\(x>0,g'(x)>0\),所以\(g(x)\)\((0,+\inf)\)单调递增,\(g(0)=0\),所以当\(x>0,g(x)>0\)
根据第一问结论,\(x_{n+1}>0,f(x_{n+1})>0\),得证
(3)\(n=1\)显然成立。
使用数学归纳法,假设对于所有\(i=1...n\)结论成立
根据经典不等式,\(x_n=x_{n+1}+\ln(1+x_{n+1})<2x_{n+1}\)
所以\(\frac{1}{2}<\frac{x_{n+1}}{x_{n}}\)
所以\(\frac{1}{2^n}<\frac{x_{n+1}}{x_1}=x_{n+1}\)(累乘法)
考虑第二问结论:转化成\(\frac{2}{x_n}-\frac{1}{x_{n+1}}<\frac{1}{2}\)
所以\(\frac{1}{x_n}-\frac{1}{x_{n+1}}<\frac{1}{2}-\frac{1}{x_n},1-\frac{n}{2}+\frac{1}{x_1}+...+\frac{1}{x_n}\leq \frac{1}{x_{n+1}}\)
根据归纳假设,\(2^{n-2}\leq \frac{1}{x_n},1-\frac{n}{2}+2^{1-2}+...+2^{n-2}=\frac{1}{2}+2^{n-1}-\frac{n}{2}\leq 1-\frac{n}{2}+\frac{1}{x_1}+...+\frac{1}{x_n}\leq \frac{1}{x_{n+1}}\)
所以\(x_{n+1}\leq\frac{1}{2^{n-1}} \leq \frac{1}{\frac{1}{2}+2^{n-1}-\frac{n}{2}}\)

posted @ 2023-10-13 15:09  celerity1  阅读(25)  评论(0)    收藏  举报