随笔 - 20  文章 - 0 评论 - 6 trackbacks - 0

目录

EM算法(1):K-means 算法

EM算法(2):GMM训练算法

EM算法(3):EM算法运用

EM算法(4):EM算法证明

 

        

                  EM算法(4):EM算法证明

1. 概述

  上一篇博客我们已经讲过了EM算法,EM算法由于其普适性收到广泛关注,高频率地被运用在各种优化问题中。但是EM算法为什么用简单两步就能保证使得问题最优化呢?下面我们就给出证明。

2. 证明

  现在我们已经对EM算法有所了解,知道其以两步(E-step和M-step)为周期,迭代进行,直到收敛为止。那问题就是,在一个周期内,目标函数的值是否增加了?如果能保证其每个周期都在增加的话,那么其必然收敛到一个局部最大值处。这就是我们EM算法所需要证明的,即:

            $p(\mathbf{X};\theta^{(i+1)}) \geqslant p(\mathbf{X};\theta^{(i)})$

  首先假设Y的分布为$q(\mathbf{Y})$,则有$\sum_Yq(\mathbf{Y}) = 1$,则:

      

  现在假设在EM算法第i个周期结束,因为KL(q||p)不小于零,那么其最小时就为0,即$q(\mathbf{Y})=p(\mathbf{Y}|\mathbf{X},\theta^{(i)})$时。

  在E-step时,我们计算$Q(\theta^{(i+1)}|\theta^{(i)})$,我们发现:

        

  在M-step时,我们找到一个$\theta^{(i+1)}$,使得$Q(\theta|\theta^{(i)})$最大,即也是使得$\mathcal{L}(q|\theta)$最大。同时,因为此时$p(\mathbf{X,Y}|\theta^{(i+1)}) \neq p(\mathbf{X,Y}|\theta^{(i)}) = q(\mathbf{Y})$,那么KL(q||p)也会大于零。那么相对于第i个EM周期结束时的目标函数的值,现在其两个和项的值都是非减的,那么很容易得到:

            $p(\mathbf(X)|\theta^{(i+1)}) \geqslant p(\mathbf{X}|\theta^{(i)})$

 

 

  

 

posted on 2016-12-24 09:50 Ccien 阅读(...) 评论(...) 编辑 收藏