微积分基本公式汇总

微积分基本公式汇总

  1. \(f(x) = x^n\),有 \(f'(x) = nx^{n - 1}\).
  2. \(\cfrac{d}{dx}(g(x) + h(x)) = \cfrac{dg}{dx} + \cfrac{dh}{dx}\).
  3. \(\cfrac{d}{dx}(g(x)h(x)) = g(x)h'(x) + h(x)g'(x)\)(左乘右导,右乘左导).
  4. \(\cfrac{d}{dx}(g(h(x))) = \cfrac{dg}{dh}(h(x))\cfrac{dh}{dx}(x)\).
  5. \(f(x) = n^x\),有 \(f'(x) = \ln(n) \cdot n^x\).
  6. 洛必达法则:\(\displaystyle\lim_{x \to \infty} \cfrac{f(x)}{F(x)} = \lim_{x \to \infty} \cfrac{f'(x)}{F'(x)}\).
  7. 微积分基本定理:\(\displaystyle\int_{a}^b f(x) \cdot dx = F(b) - F(a)\).
  8. 函数 \(f(x)\)\(x = x_0\) 处的泰勒级数为 \(\displaystyle \sum_{n = 0}^{\infty} \cfrac{f^{(n)}(x_0)}{n!} (x - x_0)^n\).
posted @ 2025-01-07 10:33  beautiful_chicken233  阅读(229)  评论(0)    收藏  举报