【数论】卡特兰数总结

了解

概念

卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。
前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …

公式

先丢几个公式

公式一
递推式

公式二
递推式

公式三
组合数公式

公式四
组合数公式

应用

矩阵连乘的括号化

P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

思路:可以这样考虑,首先通过括号化,将P分成两个部分,然后分别对两个部分进行括号化。分成(a1)×(a2×a3.....×an),然后再对(a1)(a2×a3.....×an)分别括号化;又如分成(a1×a2)×(a3.....×an),然后再对(a1×a2)和(a3.....×an)括号化。
设n个矩阵的括号化方案的种数为f(n),那么问题的解为:
f(n) = f(1)*f(n-1) + f(2)*f(n-2) + f(3)*f(n-3) + f(n-1)*f(1)f(1)*f(n-1)表示分成(a1)×(a2×a3.....×an)两部分,然后分别括号化。
计算开始几项,f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 5。结合递归式,不难发现f(n)等于h(n-1)

一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列

思路1:

首先,我们设f(n)=序列个数为n的出栈序列种数。(我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,f(n-k)*f(k-1)种。
首次出空之前第一个出栈的序数k将1~n的序列分成两个序列,其中一个是1~k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。
f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。而k可以选1到n,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)
看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n)= C(2n,n)/(n+1)= c(2n,n)-c(2n,n+1)(n=0,1,2,……)。最后,令f(0)=1,f(1)=1

思路2:

对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态1,出栈设为状态0。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。

例如

对于一个非法排列,必存在一个k,使得a1+a2+a3..ak<0,给出一个n=3时具体的排列:
1, -1, 1, -1,-1, 1
在k=5时,出现了非法情况。
我们将1~5元素翻转,即1和-1置换,那么该序列就变成了
-1, 1, -1, 1, 1, 1
这个翻转的序列中,有n+1个1,n-1个-1
我们再观察这个翻转后的序列,对于有n+1个1,n-1个-1的排列,共有C(2n,n+1)种。而对于这种非法的排列:
总是存在一个最小的k,我们只需要从第1个到第k个元素翻转回去,就能变成> 对于有n个1,n个-1的情况下的非法排列。同样,每一个n个1,n个-1的情况下的非法排列也会对应一个n+1个1,n-1个-1的排列。

因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)




类似问题,买票找零

思路:
有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)。
就是上个问题中的思想二,将5元看作1,10元看作-1即可




n*n棋盘从左下角走到右上角而不穿过主对角线的走法

思路:
先求所有从(0,0)到(n,n)的路径数X,再求所有穿过主对角线L的从(0,0)到(n,n)的路径数Y,用前者减去后者得到所求。
从左下角到右上角只能往左或者往右,往右的走n步,往上走n步,所以X就是在总的2n步中找n个位置确定是往右走得,那么剩下的n步是往上走的,所以X = Cn(2n,n)。穿过主对角线的路径数必然是往上走得步数比往右走得多,该分析过程和出入栈顺序一样,n-1个往右走和n+1个往上走必然对应一个穿越对角线L的路径的,所以Y = Cn(2n,n+1),所以f(n)=X - Y =h(n)

之前三个问题是同质的。 都可以抽象成2n个操作组成的操作链,其中A操作和B操作各n个,且要求截断到操作链的任何位置都有:A操作(向右走一步、收到5元、元素入栈)的个数不少于B操作(向上走一步、收到10元找出5元、元素出栈)的个数。




求一个凸多边形区域划分成三角形区域的方法数?

思路:
以凸多边形的一边为基,设这条边的2个顶点为A和B。从剩余顶点中选1个,可以将凸多边形分成三个部分,中间是一个三角形,左右两边分别是两个凸多边形,然后求解左右两个凸多边形。
设问题的解f(n),其中n表示顶点数,那么f(n) = f(2)*f(n-1) + f(3)*f(n-2) + ......f(n-2)*f(3) + f(n-1)*f(2)f(2)*f(n-1)表示三个相邻的顶点构成一个三角形,那么另外两个部分的顶点数分别为2和n-1。
f(2) = 1,那么f(3) = 1, f(4) = 2, f(5) = 5。结合递推式,不难发现f(n) 等于h(n-2)




n个节点构成的二叉树,共有多少种情形?

思路:
可以这样考虑,根肯定会占用一个结点,那么剩余的n-1个结点可以有如下的分配方式,T(0, n-1),T(1, n-2),...T(n-1, 0),设T(i, j)表示根的左子树含i个结点,右子树含j个结点。
设问题的解为f(n),那么f(n) = f(0)*f(n-1) + f(1)*f(n-2) + .......+ f(n-2)*f(1) + f(n-1)*f(0)。假设f(0) = 1,那么f(1) = 1, f(2) = 2, f(3) = 5。结合递推式,不难发现f(n)等于h(n)



在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

思路:
以其中一个点为基点,编号为0,然后按顺时针方向将其他点依次编号。那么与编号为0相连点的编号一定是奇数,否则,这两个编号间含有奇数个点,势必会有个点被孤立,即在一条线段的两侧分别有一个孤立点,从而导致两线段相交。设选中的基点为A,与它连接的点为B,那么A和B将所有点分成两个部分,一部分位于A、B的左边,另一部分位于A、B的右边。然后分别对这两部分求解即可。
设问题的解f(n),那么f(n) = f(0)*f(n-2) + f(2)*f(n-4) + f(4)*f(n-6) + ......f(n-4)*f(2) + f(n-2)*f(0)。f(0)*f(n-2)表示编号0的点与编号1的点相连,此时位于它们右边的点的个数为0,而位于它们左边的点为2n-2。依次类推。
f(0) = 1, f(2) = 1, f(4) = 2。结合递归式,不难发现f(2n) 等于h(n)

用法

对于卡特兰数的应用有了了解
那么在遇到相关问题时,应该怎么选用公式?

公式一

要用到递归;
那么在遇到超大数据时;
在时空上就比较麻烦

公式二

这个公式应用递推,看上起十分和善
但对大数据呢?
我们注意到大数据的时候h(n)会很大,这时候题目一般会让你对某素数取模>(当然你可以打高精度(划掉))
但你在取模过程中难保一个h(n)%mod=0
那么根据公式下面所有的数都会等于0,于是你就愉快的WA了

公式三

卡特兰数可以与组合数联系起来,得到上面的公式
而组合数就是一个杨辉三角,可以递推得到
但我们发现对于大数据你要取模,而对于除法你是没办法用膜的性质的>(当然你可以应用逆元),所以造成了麻烦

公式四

与组合数公式1不同这个是两个组合数的减法
减法是可以用膜的性质的,于是你可以愉快的AC了。
所以我写了这么多就是想说,对于一个特定的任务,可能会有很多方法求解,但其实只要稍稍分析一下就会发现有一种方法是通用而优美的

所以对于数据超大有可以取模的题目公式四是一种很好的用法

 

总结

卡特兰数的应用多,公式多,但是关键是从题目中找到递推关系;
一般是第一和第四式,然后找到规律。根据题目要求灵活运用1~4式;
优化时间空间。

 

参考:http://blog.csdn.net/lidiyang1993/article/details/45191221

posted @ 2017-10-22 21:41  bbqub  阅读(686)  评论(0编辑  收藏  举报