基于YOLOv8的蚊蝇位置智能检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
基于YOLOv8的蚊蝇位置智能检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程
基本功能演示
https://www.bilibili.com/video/BV1zYrhBxEau/
源码在哔哩哔哩视频简介处
项目摘要
本项目基于 YOLOv8 深度学习检测模型,结合 PyQt5 图形界面,实现了对蚊子和苍蝇的自动检测与定位。项目核心特点包括:
- 多输入源支持:可处理单张图片、图片文件夹、视频文件以及实时摄像头输入。
- 高精度识别:利用定制蚊蝇数据集训练,准确识别蚊子与苍蝇,同时兼顾背景样本,降低误报率。
- 开箱即用:提供完整源码、训练数据、预训练权重及部署教程,用户可直接运行检测系统或继续训练自定义模型。
- 可视化界面:PyQt5 图形界面直观展示检测结果,支持边框显示、类别标注、置信度显示等功能。
- 灵活扩展:项目结构清晰,可快速扩展到其他小型生物检测任务或多分类目标检测场景。
通过本项目,用户可实现蚊蝇数量监测、位置统计及风险评估,为实验室、公共卫生、农业及城市环境管理提供智能化工具。
前言
随着智能视觉技术的发展,小型害虫检测在公共卫生、农作物管理及环境监测中具有重要意义。传统人工检测方法不仅耗时长、效率低,而且容易漏检或误判。借助 YOLO 系列目标检测算法,本项目提供了一种快速、准确、可扩展的蚊蝇检测解决方案。
项目基于无人机或固定摄像头拍摄的实验样本,通过训练专用数据集,使模型能够在复杂背景下自动识别蚊子和苍蝇位置。结合 PyQt5 图形界面,用户无需掌握深度学习底层技术即可完成检测、可视化及数据统计。
一、软件核心功能介绍及效果演示
核心功能
- 图片检测
- 支持单张图片检测,自动标注蚊子和苍蝇位置。
- 输出标注图与 YOLO 格式检测结果。
- 批量图片处理
- 支持文件夹中所有图片的批量检测。
- 自动生成检测报告,包括数量统计及置信度分析。
- 视频检测
- 支持本地视频文件输入,实时识别视频中的蚊子与苍蝇。
- 可选择保存检测后的视频,标注框清晰展示目标。
- 摄像头实时检测
- 支持 USB 摄像头或笔记本内置摄像头实时捕捉并检测蚊蝇。
- 界面显示实时检测帧,支持帧率与置信度调节。
- 检测结果可视化
- 在 PyQt5 界面中显示目标框、类别及置信度。
- 支持结果导出,包括图片、视频和 CSV 数据。
- 训练与模型管理
- 提供完整训练代码与数据集标注示例。
- 可加载自定义权重继续训练或微调模型。
- 支持 YOLOv8 标准训练流程,包括训练集划分、超参数配置和结果可视化。
效果演示
- 图片示例:
- 检测后每只蚊子与苍蝇都会被框出,类别和置信度清晰显示。
- 视频示例:
- 视频播放时,模型实时标注移动的目标,统计目标数量并可导出检测数据。
- 实时摄像头示例:
- 界面上可即时显示检测框与数量统计,操作简单,无需命令行操作。
二、软件效果演示
为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。
(1)单图片检测演示
用户点击“选择图片”,即可加载本地图像并执行检测:

(2)多文件夹图片检测演示
用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

(3)视频检测演示
支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

(4)摄像头检测演示
实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

(5)保存图片与视频检测结果
用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

三、模型的训练、评估与推理
YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:
- 高速推理,适合实时检测任务
- 支持Anchor-Free检测
- 支持可扩展的Backbone和Neck结构
- 原生支持ONNX导出与部署
3.1 YOLOv8的基本原理
YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:
- 速度快:推理速度提升明显;
- 准确率高:支持 Anchor-Free 架构;
- 支持分类/检测/分割/姿态多任务;
- 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。
YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

YOLOv8原理图如下:

3.2 数据集准备与训练
采用 YOLO 格式的数据集结构如下:
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
每张图像有对应的 .txt 文件,内容格式为:
4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757
分类包括(可自定义):


3.3. 训练结果评估
训练完成后,将在 runs/detect/train 目录生成结果文件,包括:
results.png:损失曲线和 mAP 曲线;weights/best.pt:最佳模型权重;confusion_matrix.png:混淆矩阵分析图。
若 mAP@0.5 达到 90% 以上,即可用于部署。
在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

3.4检测结果识别
使用 PyTorch 推理接口加载模型:
import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel
# 加入可信模型结构
safe_globals().add(DetectionModel)
# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)
# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name
# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
预测结果包含类别、置信度、边框坐标等信息。

四.YOLOV8+YOLOUI完整源码打包
本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:
4.1 项目开箱即用
作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。
运行项目只需输入下面命令。
python main.py
读者也可自行配置训练集,或使用打包好的数据集直接训练。
自行训练项目只需输入下面命令。
yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001
4.2 完整源码
至项目实录视频下方获取:https://www.bilibili.com/video/BV1zYrhBxEau/

包含:
📦完整项目源码
📦 预训练模型权重
🗂️ 数据集地址(含标注脚本)
总结
本项目基于 YOLOv8 深度学习检测模型与 PyQt5 图形界面,实现了蚊子与苍蝇的高效、智能化检测与定位。通过专用数据集训练,系统能够在复杂背景下准确识别目标,同时提供图片、视频及摄像头多种输入方式。
项目核心优势包括:
- 高精度识别:模型在小型目标和复杂背景下表现稳定,误报率低。
- 多场景适用:支持单张图片、批量图片、视频和实时摄像头输入。
- 可视化与易用性:界面直观,标注清晰,用户无需深度学习经验即可使用。
- 可扩展性:源码结构清晰,可快速应用于其他小型生物检测任务或扩展目标类别。
- 开箱即用:提供完整训练流程、权重文件和部署教程,用户可直接上手或自定义训练。
整体而言,本项目为公共卫生监测、实验室研究和环境管理提供了一个 快速、可靠、可视化的智能检测解决方案,降低人工检测成本,提高数据收集效率,为小型害虫监控提供了可落地的技术工具。

浙公网安备 33010602011771号