[A202211110303]

[A202211110303](2022, 同济大学)已知 \(\{a_n\}\) 是一个实数列,\(0<|\lambda|<1\). 证明:\(\displaystyle\lim_{n\rightarrow \infty} a_n=a\) 的充要条件是

\[\lim_{n\rightarrow \infty} \left( a_{n+1}-\lambda a_n \right) =\left( 1-\lambda \right) a. \]

证明1. 必要性是显然的,下证充分性. 设 \(b_n=a_{n+1}-\lambda a_n\),从而 \(\displaystyle\lim_{n\rightarrow \infty} b_n=\left( 1-\lambda \right) a\).

由上、下极限的性质,

\[\varlimsup_{n\rightarrow \infty}a_n=\left( 1-\lambda \right) a+\lambda \varlimsup_{n\rightarrow \infty}a_n, \]

\[\varliminf_{n\rightarrow \infty}a_n=\left( 1-\lambda \right) a+\lambda \varliminf_{n\rightarrow \infty}a_n, \]

从而 \(\displaystyle\varlimsup_{n\rightarrow \infty}a_n=a=\varliminf_{n\rightarrow \infty}a_n\),从而\(\displaystyle\lim_{n\rightarrow \infty} a_n=a\).

证明2. 只证明充分性. 令 \(b_n=a_{n+1}-\lambda a_n\),从而 \(\displaystyle\lim_{n\rightarrow \infty} b_n=\left( 1-\lambda \right) a\),从而 \(a_{n+1}=\lambda a_n+b_n\),于是 \(\dfrac{a_{n+1}}{\lambda ^{n+1}}=\dfrac{a_n}{\lambda ^n}+\dfrac{b_n}{\lambda ^{n+1}}\),从而累加得到

\[\frac{a_{n+1}}{\lambda ^{n+1}}=\frac{a_1}{\lambda}+\sum_{k=1}^n{\frac{b_k}{\lambda ^{k+1}}}, \]

也即

\[a_{n+1}=\dfrac{\dfrac{a_1}{\lambda}+\displaystyle\sum_{k=1}^n{\dfrac{b_k}{\lambda ^{k+1}}}}{\dfrac{1}{\lambda ^{n+1}}} \]

从而由 Stolz 定理,

\[\lim_{n\rightarrow \infty} a_n=\lim_{n\rightarrow \infty} a_{n+1}=\lim_{n\rightarrow \infty} \frac{\dfrac{b_n}{\lambda ^{n+1}}}{\dfrac{1}{\lambda ^{n+1}}-\dfrac{1}{\lambda ^n}}=\lim_{n\rightarrow \infty} \frac{b_n}{1-\lambda}=a. \]

posted @ 2022-11-11 03:06  BaireMath  阅读(33)  评论(0)    收藏  举报