Hello World

测试数学公式效果

问题. Let be \(f:[0,1]\to[0,1]\) a continuous and bijective function, such that: \(f(0)=0\). Then the following inequality holds:

\[\left( \alpha +2 \right) \int_0^1{x^{\alpha}\left( f\left( x \right) +f^{-1}\left( x \right) \right)\text{d}x \leqslant 2},\forall \alpha \geqslant 0. \]

证明. 由于 \(f:[0,1]\to[0,1]\) 是双射,且 \(f(0)=0\),故 \(f(x)\)\([0,1]\) 上单调递增,\(f(1)=1\). 令 \(g(x)=\int_0^x (f(t)+f^{-1}(t))\text{d}t\). 由 Young 不等式得 \(g(x)\geqslant x^2\),当且仅当 \(f(x)=x\) 时取等号,从而 \(g(1)=1\).

\[\begin{aligned} \int_0^1{x^{\alpha}\left( f\left( x \right) +f^{-1}\left( x \right) \right) \mathrm{d}x}&=\int_0^1{x^{\alpha}\mathrm{d}g\left( x \right)}\\ &=x^{\alpha}g\left( x \right) \mid_{0}^{1}-\alpha \int_0^1{x^{\alpha -1}g(x)\mathrm{d}x}\\ &\leqslant 1-\alpha \int_0^1{x^{\alpha +1}\mathrm{d}x}=\frac{2}{\alpha +2} \end{aligned} \]

从而

\[\left( \alpha +2 \right) \int_0^1{x^{\alpha}\left( f\left( x \right) +f^{-1}\left( x \right) \right)\text{d}x \leqslant 2}, \]

当且仅当 \(f(x)=x\) 时取到等号.

问题.\(f\)\([0,1]\)\(n\) 阶连续可微,\(f\left(\frac{1}{2}\right)=0\)\(f^{(i)}\left(\frac{1}{2}\right)=0\)\(i=1,2,\cdots,n\). 证明

\[\left( \int_0^1{f\left( x \right) \mathrm{d}x} \right) ^2\leqslant \frac{1}{\left( 2n+1 \right) 4^n\left( n! \right) ^2}\int_0^1{\left( f^{\left( n \right)}\left( x \right) \right) ^2\mathrm{d}x}. \]

证明.\(f(x)\)\(x=\frac{1}{2}\) 处用带积分余项的 Taylor 公式展开到 \(x^{n-1}\),由题设得到

\[f\left( x \right) =r_{n-1}\left( x \right) =\int_{1/2}^x{\frac{\left( x-t \right) ^{n-1}}{(n-1)!}f^{\left( n \right)}\left( t \right) \mathrm{d}t}. \]

也即

\[\begin{align*} \int_0^1{f\left( x \right) \mathrm{d}x}&=\int_0^1{\int_{1/2}^x{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}t\mathrm{d}x}}\\ &=\int_0^{1/2}{\int_{1/2}^x{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}t\mathrm{d}x}}+\int_{1/2}^1{\int_{1/2}^x{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}t\mathrm{d}x}} \end{align*} \]

一方面,

\[\begin{align*} \int_0^{1/2}{\int_{1/2}^x{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}t\mathrm{d}x}}&=-\int_0^{1/2}{\int_0^t{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}x\mathrm{d}t}}\\ &=-\frac{\left( -1 \right) ^n}{n!}\int_0^{1/2}{t^nf^{\left( n \right)}\left( t \right) \mathrm{d}t} \end{align*} \]

另一方面,

\[\begin{align*} \int_{1/2}^1{\int_{1/2}^x{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}t\mathrm{d}x}}&=\int_{1/2}^1{\int_t^1{\frac{\left( x-t \right) ^{n-1}}{\left( n-1 \right) !}f^{\left( n \right)}\left( t \right) \mathrm{d}x\mathrm{d}t}}\\ &=\frac{1}{n!}\int_{1/2}^1{\left( 1-t \right) ^{n}f^{\left( n \right)}\left( t \right) \mathrm{d}t} \end{align*} \]

从而由 \(\int_a^b f(x)\text{d}x\leqslant \int_a^b |f(x)|\text{d}x\)

\[\begin{align*} \int_0^1{f\left( x \right) \mathrm{d}x}&=\frac{1}{n!}\left( \left( -1 \right) ^n\int_0^{1/2}{t^nf^{\left( n \right)}\left( t \right) \mathrm{d}t}+\int_{1/2}^1{\left( 1-t \right) ^nf^{\left( n \right)}\left( t \right) \mathrm{d}t} \right) \\ &\leqslant \frac{1}{n!}\int_0^1{\left( \min \left\{ t,1-t \right\} \right) ^n\left| f^{\left( n \right)}\left( t \right) \right|\mathrm{d}t} \end{align*} \]

再由 Cauchy-Schwarz 不等式,

\[\left( \int_0^1{f\left( x \right) \mathrm{d}x} \right) ^2\leqslant \frac{1}{\left( n! \right) ^2}\int_0^1{\left( \min \left\{ t,1-t \right\} \right) ^{2n}\mathrm{d}t}\int_0^1{\left( f^{\left( n \right)}\left( t \right) \right) ^2\mathrm{d}t} \]

\(\int_0^1{\left( \min \left\{ t,1-t \right\} \right) ^{2n}\mathrm{d}t}=2\int_0^{1/2}{t^{2n}\mathrm{d}x}=\frac{1}{\left( 2n+1 \right) 4^n}\),代入上式即得

\[\left( \int_0^1{f\left( x \right) \mathrm{d}x} \right) ^2\leqslant \frac{1}{\left( 2n+1 \right) 4^n\left( n! \right) ^2}\int_0^1{\left( f^{\left( n \right)}\left( x \right) \right) ^2\mathrm{d}x}. \]

(1)Markdown 编辑器中输入多行公式:https://zhuanlan.zhihu.com/p/95674430 ,如果不想公式有编号,可以在“$$”内使用 aligned 或者 align* 环境

(2)&emph; 这样的符号似乎并不能在文章中编译出来

posted @ 2022-06-24 16:47  BaireMath  阅读(10)  评论(0)    收藏  举报