Loading

P3327 [SDOI2015]约数个数和

\(\text{solution}\)

又是一道清新的莫比乌斯反演(真是令人作呕)。

Tm 的想了 \(5\) 分钟没有想到怎么推柿子结果是 \(d\) 的性质没了解到。这道题会 \(d\) 的性质就秒秒钟切。

\(d\) 的性质:

\[d(i \cdot j) = \sum_{x | i} \sum_{y | j} [\gcd(x, y) = 1] \]

有了这个性质就秒秒钟切,先令 \(n \le m\)

\[\sum_{i = 1}^{n}\sum_{j = 1}^{m}\sum_{x | i}\sum_{y | j} [\gcd(x, y) = 1] \]

\[\sum_{i = 1}^{n}\sum_{j = 1}^{m} [x | i] [ y | j] [\gcd(x, y) = 1] \]

根据直觉可得:

\[\sum_{x = 1}^{n}\sum_{y = 1}^{m}\left\lfloor \frac{n}{x} \right\rfloor \left\lfloor \frac{m}{y} \right\rfloor [\gcd (x, y) = 1] \]

\[\sum_{x = 1}^{n}\sum_{y = 1}^{m}\left\lfloor \frac{n}{x} \right\rfloor \left\lfloor \frac{m}{y} \right\rfloor \sum_{p | \gcd(x, y)} \mu(p) \]

\[\sum_{x = 1}^{n}\sum_{y = 1}^{m}\left\lfloor \frac{n}{x} \right\rfloor \left\lfloor \frac{m}{y} \right\rfloor \sum_{p = 1}^n [p | x] [p | y] \mu(p) \]

很显然 \([p|x][p|y] = 0\) 是无用的:

\[\sum_{p = 1}^{n} \mu(p) \sum_{i = 1}^{\lfloor \frac{n}{p}\rfloor}\sum_{j = 1}^{\lfloor \frac{m}{p}\rfloor} \left\lfloor \frac{n}{p i} \right\rfloor\left\lfloor \frac{m}{p j} \right\rfloor \]

\[\sum_{p = 1}^{n} \mu(p) \sum_{i = 1}^{\lfloor \frac{n}{p}\rfloor} \left\lfloor \frac{n}{p i} \right\rfloor\sum_{j = 1}^{\lfloor \frac{m}{p}\rfloor}\left\lfloor \frac{m}{p j} \right\rfloor \]

然后发现 \(\left\lfloor \frac{n}{p i} \right\rfloor = \left\lfloor \frac{\frac{n}{p}}{i} \right\rfloor\),此时你可以预处理出里面的数,外面和里面可以用整除分块搞。

posted @ 2023-05-31 11:40  Alexande  阅读(14)  评论(0)    收藏  举报