上一页 1 ··· 5 6 7 8 9 10 11 12 13 ··· 32 下一页
摘要: 1 import java.io.*; 2 import java.util.*; 3 import java.math.BigInteger; 4 /* 5 构造器 6 BigInteger(String val) 7 将 BigInteger 的十进制字符串表示形式转换为 BigInteger 8 BigInteger(String val, int radix) 9 将指定基数的 BigInteger 的字符串表示形式转换为 BigInteger10 11 常用方法12 add,subtract,multiply,divide,intValue,... 阅读全文
posted @ 2013-03-03 19:56 Szz 阅读(315) 评论(0) 推荐(0)
摘要: http://acm.hdu.edu.cn/showproblem.php?pid=1002大整数加法 :View Code 1 import java.util.*; 2 import java.math.*; 3 public class Main{ 4 5 public static void main(String args[]){ 6 7 Scanner cin = new Scanner(System.in) ; 8 int T = cin.nextInt() ; 9 int cas = 0 ;10 ... 阅读全文
posted @ 2013-03-03 19:37 Szz 阅读(236) 评论(0) 推荐(0)
摘要: 1: 单组输入 a+b sdut 1000 1 import java.util.Scanner; 2 public class Main { 3 public static void main(String args[]){ 4 5 Scanner r = new Scanner(System.in) ; 6 int a = r.nextInt(); 7 int b = r.nextInt(); 8 int c = a + b; 9 System.... 阅读全文
posted @ 2013-03-02 21:17 Szz 阅读(374) 评论(3) 推荐(0)
摘要: http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2498题意:给定 一个 有向图 ,求出 从 图中只有 一个 入度为0 的点 s 和 一个 出度 为0 的 点 t 求 s 到t的 最长路径 若有 多条 输出 字典序最小的!题解:SPFA + 反向建图 。对于 所要求的路径 ,s 的下一个点 是 与 s相连 且 距离 t 最长的点 ,若有 多个 选择序号 最小的 。所以 自然 想到 求 各个点 到 t 的 最短距离 ,这样就 用到了 反向建图,并用 pre 记录的他的 前驱结点 1 #inclu 阅读全文
posted @ 2012-12-08 10:40 Szz 阅读(646) 评论(0) 推荐(0)
摘要: http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2497题意 : 给定一个 无向图 和 一个点 s 求 是否 图中的 所有环 都包含 点s (保证 图中 至少 有 一个环)题解 : dfs 求解 只要 搜到 一个 被访问过的点 而且这个点 不是 s 那么 就有环 不含有 sView Code 1#include<cstdio>2#include<cstring>3#include<cmath>4#include<iostream>5#includ 阅读全文
posted @ 2012-12-02 19:32 Szz 阅读(208) 评论(0) 推荐(0)
摘要: http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2493好纠结 这么道 破题 比赛是竟然 没做出来 ,比赛 完后 加了个 条件就对了 ,为什么 比赛时 那么 没状态 。。。。。。。。。。。 题意:给出一个无向图 ,一个 原点 s 一个终点 t 求 一条 最短的路径 值 从 s 到 t ,对于 这条路径 可以 将 其中的 一条边的权值 减半。题解 : dij + 枚举 首先 我们可以 得到 知道 对于 t 来说 最小值 = min(与他 连接的点的 最小值 + w[i][t], s 到 i 的 阅读全文
posted @ 2012-12-02 18:08 Szz 阅读(243) 评论(0) 推荐(0)
摘要: 欧拉函数欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数的个数,记做:φ(n),其中φ(1)被定义为1,但是并没有任何实质的意义。定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然,对于素数p,φ(p)= p -1.对于两个素数p、q,他们的乘积n = pq 满足φ(n) =(p-1)(q-1) 证明:对于质数p,q,满足φ(n) =(p-1)(q-1) 考虑n的完全余数集Zn = { 1,2,....,pq -1} 而不和n互质的集合由下面三个集合的并构成: 1) 能够被p整除的集合{p,2p,3p,....,(q... 阅读全文
posted @ 2012-11-24 11:00 Szz 阅读(688) 评论(0) 推荐(0)
摘要: http://acm.hdu.edu.cn/showproblem.php?pid=1695题意:求 1~b 和 1~ d 有 多少对 数 的 gcd(x,y) = k ? x = 5 y=7 和 x= 7,y = 5 被认为是 同一种。题解:如果两个数的 最大 公约数 是 k 的 话 ,那么 x/k 与 y /k 是 互质的。所以 原题 可以转化为 求 1~b/k 和 1~d/k 有 多少对 互质的 数。假设 b = b/k,d= d/k ,b<d1:对于 1~b 我们可以 利用 欧拉函数 求 其 欧拉函数值 。欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数的个数,记做:φ. 阅读全文
posted @ 2012-11-24 10:52 Szz 阅读(397) 评论(0) 推荐(0)
摘要: http://acm.hdu.edu.cn/showproblem.php?pid=4336题意:有 n 张卡片 ,每张卡片出现的 概率 是 pi 每包至多有 一张卡片 ,也有可能没有 卡片 。求 需要买多少包 才能集齐 n 张卡片 ,求包数的 期望 。题解 : 容斥原理 。每个bag中什么卡的机会都有,说明每个概率都会有交集,这样就会想到一个图,就是右下面那个 然后就这个公式了,还是很好理解的 1#include<cstdio>2#include<cstring>3#include<cmath>4#include<iostream>5#incl 阅读全文
posted @ 2012-11-18 17:44 Szz 阅读(279) 评论(0) 推荐(0)
摘要: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=15&problem=1266&mosmsg=Submission+received+with+ID+9619336题意: 给定 n,m 和 m 个数 ,求 1~n 中 不能 能被 m个数中的任意 一个数整除 的个数题解: 首先明白对于集合[1,n]内能被a整除的数的个数为n/a,既能被a整除又能被b整除的数的个数为n/lcm(a,b)(a,b的最小公倍数);容斥原 阅读全文
posted @ 2012-11-18 15:50 Szz 阅读(403) 评论(0) 推荐(0)
上一页 1 ··· 5 6 7 8 9 10 11 12 13 ··· 32 下一页