SciTech-BigDataAIML-Tensorflow-Keras API-Layers层的API:inputs输入 + outputs产出 + states(weights权重)
https://keras.io/api/layers/
How to Use Word Embedding Layers for Deep Learning with Keras
Layer层 是Keras的 NN(神经网络)的 必要模块; 一个Layer由:
- Layer.call() 对外API调用接口
- tensor-in function张量输入函数
- tensor-out function张量产出函数
- states(Layer层的)状态(由Layer.weights属性即TensorFlow变量存储);
Keras layers API
Layers are the basic building blocks of neural networks in Keras. A layer consists of a tensor-in tensor-out computation function (the layer's call method) and some state, held in TensorFlow variables (the layer's weights).
一个Layer Class类的 Instance示例是可调用的(通过Python Class的通用类方法__call__())
A Layer instance is callable, much like a function:
import keras from keras import layers layer = layers.Dense(32, activation='relu') inputs = keras.random.uniform(shape=(10, 20)) outputs = layer(inputs) # Unlike a function, though, layers maintain a state, updated when the layer receives data during training, and stored in layer.weights: >>> layer.weights [, ] Creating custom layers
While Keras offers a wide range of built-in layers, they don't cover ever possible use case. Creating custom layers is very common, and very easy.
See the guide Making new layers and models via subclassing for an extensive overview, and refer to the documentation for the base Layer class.
Layers API overview
- The base Layer class
- Layer class
- weights property
- trainable_weights property
- non_trainable_weights property
add_weight method
trainable property
get_weights method
set_weights method
get_config method
add_loss method
losses property
Layer activations
relu function
sigmoid function
softmax function
softplus function
softsign function
tanh function
selu function
elu function
exponential function
leaky_relu function
relu6 function
silu function
hard_silu function
gelu function
hard_sigmoid function
linear function
mish function
log_softmax function
Layer weight initializers
RandomNormal class
RandomUniform class
TruncatedNormal class
Zeros class
Ones class
GlorotNormal class
GlorotUniform class
HeNormal class
HeUniform class
Orthogonal class
Constant class
VarianceScaling class
LecunNormal class
LecunUniform class
IdentityInitializer class
Layer weight regularizers
Regularizer class
L1 class
L2 class
L1L2 class
OrthogonalRegularizer class
Layer weight constraints
Constraint class
MaxNorm class
MinMaxNorm class
NonNeg class
UnitNorm class
Core layers
Input object
InputSpec object
Dense layer
EinsumDense layer
Activation layer
Embedding layer
Masking layer
Lambda layer
Identity layer
Convolution layers
Conv1D layer
Conv2D layer
Conv3D layer
SeparableConv1D layer
SeparableConv2D layer
DepthwiseConv1D layer
DepthwiseConv2D layer
Conv1DTranspose layer
Conv2DTranspose layer
Conv3DTranspose layer
Pooling layers
MaxPooling1D layer
MaxPooling2D layer
MaxPooling3D layer
AveragePooling1D layer
AveragePooling2D layer
AveragePooling3D layer
GlobalMaxPooling1D layer
GlobalMaxPooling2D layer
GlobalMaxPooling3D layer
GlobalAveragePooling1D layer
GlobalAveragePooling2D layer
GlobalAveragePooling3D layer
Recurrent layers
LSTM layer
LSTM cell layer
GRU layer
GRU Cell layer
SimpleRNN layer
TimeDistributed layer
Bidirectional layer
ConvLSTM1D layer
ConvLSTM2D layer
ConvLSTM3D layer
Base RNN layer
Simple RNN cell layer
Stacked RNN cell layer
Preprocessing layers
Text preprocessing
Numerical features preprocessing layers
Categorical features preprocessing layers
Image preprocessing layers
Image augmentation layers
Normalization layers
BatchNormalization layer
LayerNormalization layer
UnitNormalization layer
GroupNormalization layer
Regularization layers
Dropout layer
SpatialDropout1D layer
SpatialDropout2D layer
SpatialDropout3D layer
GaussianDropout layer
AlphaDropout layer
GaussianNoise layer
ActivityRegularization layer
Attention layers
GroupQueryAttention
MultiHeadAttention layer
Attention layer
AdditiveAttention layer
Reshaping layers
Reshape layer
Flatten layer
RepeatVector layer
Permute layer
Cropping1D layer
Cropping2D layer
Cropping3D layer
UpSampling1D layer
UpSampling2D layer
UpSampling3D layer
ZeroPadding1D layer
ZeroPadding2D layer
ZeroPadding3D layer
Merging layers
Concatenate layer
Average layer
Maximum layer
Minimum layer
Add layer
Subtract layer
Multiply layer
Dot layer
Activation layers
ReLU layer
Softmax layer
LeakyReLU layer
PReLU layer
ELU layer
Backend-specific layers
TorchModuleWrapper layer
Tensorflow SavedModel layer
JaxLayer
FlaxLayer

浙公网安备 33010602011771号