9.24 动态坐标关系/多坐标关系/实操=还没自己写

动态坐标变换

所谓动态坐标变换,是指两个坐标系之间的相对位置是变化的。

动态坐标的一个问题,是每次都要取一个坐标值吗

需求描述:

启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘控制乌龟运动,将两个坐标系的相对位置动态发布。

结果演示:

img

实现分析:

  1. 乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
  2. 订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
  3. 将 pose 信息转换成 坐标系相对信息并发布

实现流程:C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 创建坐标相对关系发布方(同时需要订阅乌龟位姿信息)
  3. 创建坐标相对关系订阅方
  4. 执行

方案A:C++实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

​ 问题:发布方是通过什么话题来发布的? 通过坐标吧

3.订阅方

一个问题在订阅方中,下面的时间搓是不允许的,会报异常

原因:动态情况:订阅放中的buffer缓存存储发布方发送的坐标已经大量的时间,但数据传输是有延迟的,

​ 订阅方在转换坐标中,会将转换的坐标系的时间搓进行比对,如果时间差太多,会报错。而使用下面的操作

意味这不设置值,则没事

ps.header.stamp = ros::Time(0.0);

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,与演示结果类似。

可以使用 rviz 查看坐标系相对关系。

多坐标变换 看到不是很懂

需求描述:

现有坐标系统,父级坐标系统 world,下有两子级系统 son1,son2,son1 相对于 world,以及 son2 相对于 world 的关系是已知的,求 son1原点在 son2中的坐标,又已知在 son1中一点的坐标,要求求出该点在 son2 中的坐标

实现分析:

  1. 首先,需要发布 son1 相对于 world,以及 son2 相对于 world 的坐标消息
  2. 然后,需要订阅坐标发布消息,并取出订阅的消息,借助于 tf2 实现 son1 和 son2 的转换
  3. 最后,还要实现坐标点的转换

实现流程:C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 创建坐标相对关系发布方(需要发布两个坐标相对关系)
  3. 创建坐标相对关系订阅方
  4. 执行

方案A:C++实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

​ tf2 tf2_ros tf2_geometry_msgs roscpp rospy std_msgs geometry_msgs

2.发布方

为了方便,使用静态坐标变换发布

<launch>
    <node pkg="tf2_ros" type="static_transform_publisher" name="son1" args="0.2 0.8 0.3 0 0 0 /world /son1" output="screen" />
    <node pkg="tf2_ros" type="static_transform_publisher" name="son2" args="0.5 0 0 0 0 0 /world /son2" output="screen" />
</launch>
Copy

3.订阅方

/*

需求:
    现有坐标系统,父级坐标系统 world,下有两子级系统 son1,son2,
    son1 相对于 world,以及 son2 相对于 world 的关系是已知的,
    求 son1 与 son2中的坐标关系,又已知在 son1中一点的坐标,要求求出该点在 son2 中的坐标
实现流程:
    1.包含头文件
    2.初始化 ros 节点
    3.创建 ros 句柄
    4.创建 TF 订阅对象
    5.解析订阅信息中获取 son1 坐标系原点在 son2 中的坐标
      解析 son1 中的点相对于 son2 的坐标
    6.spin

*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2/LinearMath/Quaternion.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h"
#include "geometry_msgs/TransformStamped.h"
#include "geometry_msgs/PointStamped.h"

int main(int argc, char *argv[])
{   setlocale(LC_ALL,"");
    // 2.初始化 ros 节点
    ros::init(argc,argv,"sub_frames");
    // 3.创建 ros 句柄
    ros::NodeHandle nh;
    // 4.创建 TF 订阅对象
    tf2_ros::Buffer buffer; 
    tf2_ros::TransformListener listener(buffer);
    // 5.解析订阅信息中获取 son1 坐标系原点在 son2 中的坐标
    ros::Rate r(1);
    while (ros::ok())
    {
        try
        {
        //   解析 son1 中的点相对于 son2 的坐标
            geometry_msgs::TransformStamped tfs = buffer.lookupTransform("son2","son1",ros::Time(0));
            ROS_INFO("Son1 相对于 Son2 的坐标关系:父坐标系ID=%s",tfs.header.frame_id.c_str());
            ROS_INFO("Son1 相对于 Son2 的坐标关系:子坐标系ID=%s",tfs.child_frame_id.c_str());
            ROS_INFO("Son1 相对于 Son2 的坐标关系:x=%.2f,y=%.2f,z=%.2f",
                    tfs.transform.translation.x,
                    tfs.transform.translation.y,
                    tfs.transform.translation.z
                    );

            // 坐标点解析
            geometry_msgs::PointStamped ps;
            ps.header.frame_id = "son1";
            ps.header.stamp = ros::Time::now();
            ps.point.x = 1.0;
            ps.point.y = 2.0;
            ps.point.z = 3.0;

            geometry_msgs::PointStamped psAtSon2;
            psAtSon2 = buffer.transform(ps,"son2");
            ROS_INFO("在 Son2 中的坐标:x=%.2f,y=%.2f,z=%.2f",
                    psAtSon2.point.x,
                    psAtSon2.point.y,
                    psAtSon2.point.z
                    );
        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("异常信息:%s",e.what());
        }


        r.sleep();
        // 6.spin
        ros::spinOnce();
    }
    return 0;
}
Copy

配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,将输出换算后的结果。


方案B:Python实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

为了方便,使用静态坐标变换发布

<launch>
    <node pkg="tf2_ros" type="static_transform_publisher" name="son1" args="0.2 0.8 0.3 0 0 0 /world /son1" output="screen" />
    <node pkg="tf2_ros" type="static_transform_publisher" name="son2" args="0.5 0 0 0 0 0 /world /son2" output="screen" />
</launch>
Copy

3.订阅方

#!/usr/bin/env python
"""  
    需求:
        现有坐标系统,父级坐标系统 world,下有两子级系统 son1,son2,
        son1 相对于 world,以及 son2 相对于 world 的关系是已知的,
        求 son1 与 son2中的坐标关系,又已知在 son1中一点的坐标,要求求出该点在 son2 中的坐标
    实现流程:   
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.调用 API 求出 son1 相对于 son2 的坐标关系
        5.创建一依赖于 son1 的坐标点,调用 API 求出该点在 son2 中的坐标
        6.spin

"""
# 1.导包
import rospy
import tf2_ros
from geometry_msgs.msg import TransformStamped
from tf2_geometry_msgs import PointStamped

if __name__ == "__main__":

    # 2.初始化 ROS 节点
    rospy.init_node("frames_sub_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():

        try:
        # 4.调用 API 求出 son1 相对于 son2 的坐标关系
            #lookup_transform(self, target_frame, source_frame, time, timeout=rospy.Duration(0.0)):
            tfs = buffer.lookup_transform("son2","son1",rospy.Time(0))
            rospy.loginfo("son1 与 son2 相对关系:")
            rospy.loginfo("父级坐标系:%s",tfs.header.frame_id)
            rospy.loginfo("子级坐标系:%s",tfs.child_frame_id)
            rospy.loginfo("相对坐标:x=%.2f, y=%.2f, z=%.2f",
                        tfs.transform.translation.x,
                        tfs.transform.translation.y,
                        tfs.transform.translation.z,
            )
        # 5.创建一依赖于 son1 的坐标点,调用 API 求出该点在 son2 中的坐标
            point_source = PointStamped()
            point_source.header.frame_id = "son1"
            point_source.header.stamp = rospy.Time.now()
            point_source.point.x = 1
            point_source.point.y = 1
            point_source.point.z = 1

            point_target = buffer.transform(point_source,"son2",rospy.Duration(0.5))

            rospy.loginfo("point_target 所属的坐标系:%s",point_target.header.frame_id)
            rospy.loginfo("坐标点相对于 son2 的坐标:(%.2f,%.2f,%.2f)",
                        point_target.point.x,
                        point_target.point.y,
                        point_target.point.z
            )

        except Exception as e:
            rospy.logerr("错误提示:%s",e)


        rate.sleep()
    # 6.spin    
    # rospy.spin()
Copy

权限设置以及配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,将输出换算后的结果。

坐标关系查看

在机器人系统中,涉及的坐标系有多个,为了方便查看,ros 提供了专门的工具,可以用于生成显示坐标系关系的 pdf 文件,该文件包含树形结构的坐标系图谱。

6.1准备

首先调用rospack find tf2_tools查看是否包含该功能包,如果没有,请使用如下命令安装:

sudo apt install ros-noetic-tf2-tools
Copy

6.2使用

6.2.1生成 pdf 文件

启动坐标系广播程序之后,运行如下命令:

rosrun tf2_tools view_frames.py

会产生类似于下面的日志信息:

[INFO] [1592920556.827549]: Listening to tf data during 5 seconds...
[INFO] [1592920561.841536]: Generating graph in frames.pdf file...

查看当前目录会生成一个 frames.pdf 文件

6.2.2查看文件

可以直接进入目录打开文件,或者调用命令查看文件:evince frames.pdf

内如如图所示:img


另请参考:

TF坐标变换实操

笔记: 抽象的问题都映射有一个显示的问题,一个导弹如何击打目标

设计一张世界地图

车和导弹都有自己的坐标

根据各自的坐标实现坐标变换,计算出车相对导弹的位置

通过计算车在导弹坐标系的位置是(5,14.5)

需求描述:

程序启动之初: 产生两只乌龟,中间的乌龟(A) 和 左下乌龟(B), B 会自动运行至A的位置,并且键盘控制时,只是控制 A 的运动,但是 B 可以跟随 A 运行

结果演示:

img

实现分析:

乌龟跟随实现的核心,是乌龟A和B都要发布相对世界坐标系的坐标信息,然后,订阅到该信息需要转换获取A相对于B坐标系的信息,最后,再生成速度信息,并控制B运动。

  1. 启动乌龟显示节点
  2. 在乌龟显示窗体中生成一只新的乌龟(需要使用服务)
  3. 编写两只乌龟发布坐标信息的节点
  4. 编写订阅节点订阅坐标信息并生成新的相对关系生成速度信息

实现流程:C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 编写服务客户端,用于生成一只新的乌龟
  3. 编写发布方,发布两只乌龟的坐标信息
  4. 编写订阅方,订阅两只乌龟信息,生成速度信息并发布
  5. 运行

准备工作:

1.了解如何创建第二只乌龟,且不受键盘控制

创建第二只乌龟需要使用rosservice,话题使用的是 spawn

rosservice call /spawn "x: 1.0
y: 1.0
theta: 1.0
name: 'turtle_flow'" 
name: "turtle_flow"

键盘是无法控制第二只乌龟运动的,因为使用的话题: /第二只乌龟名称/cmd_vel,对应的要控制乌龟运动必须发布对应的话题消息

2.了解如何获取两只乌龟的坐标

是通过话题 /乌龟名称/pose 来获取的

x: 1.0 //x坐标
y: 1.0 //y坐标
theta: -1.21437060833 //角度
linear_velocity: 0.0 //线速度
angular_velocity: 1.0 //角速度
Copy

方案A:C++实现

1.创建功能包

tf2 tf2_ros tf2_geometry_msgs roscpp rospy std_msgs geometry_msgs turtlesim

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.服务客户端(生成乌龟)

/my_turtle/cmd_vel   话题名称一样命名空间不一样
/my_turtle/color_sensor
/my_turtle/pose
/rosout
/rosout_agg
/turtle1/cmd_vel
/turtle1/color_sensor
/turtle1/pose

/* 
    创建第二只小乌龟
 */
#include "ros/ros.h"
#include "turtlesim/Spawn.h"

int main(int argc, char *argv[])
{

    setlocale(LC_ALL,"");

    //执行初始化
    ros::init(argc,argv,"create_turtle");
    //创建节点
    ros::NodeHandle nh;
    //创建服务客户端
    ros::ServiceClient client = nh.serviceClient<turtlesim::Spawn>("/spawn");

    ros::service::waitForService("/spawn");
    turtlesim::Spawn spawn;
    spawn.request.name = "turtle2";
    spawn.request.x = 1.0;
    spawn.request.y = 2.0;
    spawn.request.theta = 3.12415926;
    bool flag = client.call(spawn);
    if (flag)
    {
        ROS_INFO("乌龟%s创建成功!",spawn.response.name.c_str());
    }
    else
    {
        ROS_INFO("乌龟2创建失败!");
    }

    ros::spin();

    return 0;
}
Copy

配置文件此处略。

3.发布方(发布两只乌龟的坐标信息)

可以订阅乌龟的位姿信息,然后再转换成坐标信息,两只乌龟的实现逻辑相同,只是订阅的话题名称,生成的坐标信息等稍有差异,可以将差异部分通过参数传入:

  • 该节点需要启动两次
  • 每次启动时都需要传入乌龟节点名称(第一次是 turtle1 第二次是 turtle2)
/*  
    该文件实现:需要订阅 turtle1 和 turtle2 的 pose,然后广播相对 world 的坐标系信息

    注意: 订阅的两只 turtle,除了命名空间(turtle1 和 turtle2)不同外,
          其他的话题名称和实现逻辑都是一样的,
          所以我们可以将所需的命名空间通过 args 动态传入

    实现流程:
        1.包含头文件
        2.初始化 ros 节点
        3.解析传入的命名空间
        4.创建 ros 句柄
        5.创建订阅对象
        6.回调函数处理订阅的 pose 信息
            6-1.创建 TF 广播器
            6-2.将 pose 信息转换成 TransFormStamped
            6-3.发布
        7.spin

*/
//1.包含头文件
#include "ros/ros.h"
#include "turtlesim/Pose.h"
#include "tf2_ros/transform_broadcaster.h"
#include "tf2/LinearMath/Quaternion.h"
#include "geometry_msgs/TransformStamped.h"
//保存乌龟名称
std::string turtle_name;


void doPose(const turtlesim::Pose::ConstPtr& pose){
    //  6-1.创建 TF 广播器 ---------------------------------------- 注意 static
    static tf2_ros::TransformBroadcaster broadcaster;
    //  6-2.将 pose 信息转换成 TransFormStamped
    geometry_msgs::TransformStamped tfs;
    tfs.header.frame_id = "world";
    tfs.header.stamp = ros::Time::now();
    tfs.child_frame_id = turtle_name;
    tfs.transform.translation.x = pose->x;
    tfs.transform.translation.y = pose->y;
    tfs.transform.translation.z = 0.0;
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,pose->theta);
    tfs.transform.rotation.x = qtn.getX();
    tfs.transform.rotation.y = qtn.getY();
    tfs.transform.rotation.z = qtn.getZ();
    tfs.transform.rotation.w = qtn.getW();
    //  6-3.发布
    broadcaster.sendTransform(tfs);

} 

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ros 节点
    ros::init(argc,argv,"pub_tf");
    // 3.解析传入的命名空间
    if (argc != 2)
    {
        ROS_ERROR("请传入正确的参数");
    } else {
        turtle_name = argv[1];
        ROS_INFO("乌龟 %s 坐标发送启动",turtle_name.c_str());
    }

    // 4.创建 ros 句柄
    ros::NodeHandle nh;
    // 5.创建订阅对象
    ros::Subscriber sub = nh.subscribe<turtlesim::Pose>(turtle_name + "/pose",1000,doPose);
    //     6.回调函数处理订阅的 pose 信息
    //         6-1.创建 TF 广播器
    //         6-2.将 pose 信息转换成 TransFormStamped
    //         6-3.发布
    // 7.spin
    ros::spin();
    return 0;
}
Copy

配置文件此处略。

//线速度和角速度

4.订阅方(解析坐标信息并生成速度信息)

/*  
    订阅 turtle1 和 turtle2 的 TF 广播信息,查找并转换时间最近的 TF 信息
    将 turtle1 转换成相对 turtle2 的坐标,在计算线速度和角速度并发布

    实现流程:
        1.包含头文件
        2.初始化 ros 节点
        3.创建 ros 句柄
        4.创建 TF 订阅对象
        5.处理订阅到的 TF
        6.spin

*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "geometry_msgs/TransformStamped.h"
#include "geometry_msgs/Twist.h"

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ros 节点
    ros::init(argc,argv,"sub_TF");
    // 3.创建 ros 句柄
    ros::NodeHandle nh;
    // 4.创建 TF 订阅对象
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);
    // 5.处理订阅到的 TF

    // 需要创建发布 /turtle2/cmd_vel 的 publisher 对象

    ros::Publisher pub = nh.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel",1000);

    ros::Rate rate(10);
    while (ros::ok())
    {
        try
        {
            //5-1.先获取 turtle1 相对 turtle2 的坐标信息
            geometry_msgs::TransformStamped tfs = buffer.lookupTransform("turtle2","turtle1",ros::Time(0));

            //5-2.根据坐标信息生成速度信息 -- geometry_msgs/Twist.h
            geometry_msgs::Twist twist;
            twist.linear.x = 0.5 * sqrt(pow(tfs.transform.translation.x,2) + pow(tfs.transform.translation.y,2));
            twist.angular.z = 4 * atan2(tfs.transform.translation.y,tfs.transform.translation.x);

            //5-3.发布速度信息 -- 需要提前创建 publish 对象
            pub.publish(twist);
        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("错误提示:%s",e.what());
        }



        rate.sleep();
        // 6.spin
        ros::spinOnce();
    }

    return 0;
}
Copy

配置文件此处略。

5.运行

使用 launch 文件组织需要运行的节点,内容示例如下:

posted @ 2022-09-24 20:44  精通+1  阅读(224)  评论(0)    收藏  举报