不动点方法探隅 1
不动点方法探隅 1
若 \(a_{n+1}=\frac{aa_{n}+b}{ca_n+d}\) ,求通项
\[\begin{equation}
\begin{aligned}
&设& a_{n+1}-\lambda&=\frac{(a-\lambda c)a_{n}+(b-\lambda d)}{ca_n+d}\\
&要满足&a_{n+1}-\lambda&=\frac{(a-\lambda c)(a_n-\lambda)}{ca_n+d}\\
&& &=\frac{(a-\lambda c)a_n-\lambda(a-\lambda c)}{ca_n+d}\\
&即& (b-\lambda d)&=-\lambda(a-\lambda c)\\
&即& (b+\lambda a)&=\lambda(\lambda c+d)\\
&&\lambda&=\frac{\lambda a+b}{\lambda c+d}\\
&解得\lambda\ 是\ x_1,x_2,代入. &&\begin{cases}
a_{n+1}-x_1&=\frac{(a-cx_1)(a_n-x_1)}{ca_n+d}\\
a_{n+1}-x_2&=\frac{(a-cx_2)(a_n-x_2)}{ca_n+d}\\
\end{cases}\\
&if\ x_1!=x_2& \frac{a_{n+1}-x_1}{a_{n+1}-x_2}&=\frac{\frac{(a-cx_1)(a_n-x_1)}{ca_n+d}}{\frac{(a-cx_2)(a_n-x_2)}{ca_n+d}}\\
&&&=k\frac{a_{n}-x_1}{a_{n}-x_2}\\
&if\ x_1==x_2& \frac{1}{a_{n+1}-\lambda}&=\frac{ca_n+d}{(a-\lambda c)(a_n-\lambda)}\\
&& \frac{1}{a_{n+1}-\lambda}&=\frac{ca_n+d-(a-\lambda c)+(a-\lambda c)}{(a-\lambda c)(a_n-\lambda)}\\
&& &=\frac{ca_n+d-(a-\lambda c)}{(a-\lambda c)(a_n-\lambda)}+\frac{1}{a_n-\lambda}\\
&&&=\frac{c(a_n-\lambda)+d-a+2\lambda c}{(a-\lambda c)(a_n-\lambda)}+\frac{1}{a_n-\lambda}\\
&考察c\lambda^2+(d-a)\lambda-b=0& \lambda=\frac{a-d}{2c}\\
&so&\frac{1}{a_{n+1}-\lambda}&=\frac{c(a_n-\lambda)}{(a-\lambda c)(a_n-\lambda)}+\frac{1}{a_n-\lambda}\\
&&&=\frac{c}{a-\lambda c}+\frac{1}{a_n-\lambda}\\
&&&=k+\frac{1}{a_n-\lambda}
\end{aligned}
\end{equation}
\]

浙公网安备 33010602011771号