P2257 YY的GCD 柿子推导|题解

默认 \(n \le m\)

\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)\in Prime] \]

\[=\sum_{k=1,\ k \in Prime}\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=k] \]

\[=\sum_{k=1,\ k \in Prime}\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[\gcd(i,j)=1] \]

已知

\[\sum_{d|n}\mu(d)=[n=1] \]

\(\gcd(i,j)\) 作为 \(n\) 代入上式

\[=\sum_{k=1,\ k \in Prime}\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d | \gcd(i,j)} \mu(d) \]

由于 \(d | \gcd(i,j)\),套路地交换求和顺序

\[=\sum_{k=1,\ k \in Prime} \sum_{d=1}^{\lfloor\frac{n}{k}\rfloor} \mu(d) \times \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{k}\rfloor} [d|\gcd(i,j)]\]

由于 \(d | \gcd(i,j)\),则可设 \(i=d\times x,j=d\times y,\ x,y \in Z\)

同除 \(d\),可得

\[=\sum_{k=1,\ k \in Prime} \sum_{d=1}^{\lfloor\frac{n}{k}\rfloor} \mu(d) \times \sum_{i=1}^{\lfloor\frac{n}{kd}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{kd}\rfloor} [1|\gcd(\frac{i}{d},\frac{j}{d})]\]

显然 \([1|\gcd(\frac{i}{d},\frac{j}{d})]\) 恒为 \(1\)

可得

\[=\sum_{k=1,\ k \in Prime} \sum_{d=1}^{\lfloor\frac{n}{k}\rfloor} \mu(d) \times {\lfloor\frac{n}{kd}\rfloor} \times {\lfloor\frac{m}{kd}\rfloor} \]

交换求和顺序

存疑

\[ \sum_{kd=1}^{n} {\lfloor\frac{n}{kd}\rfloor} \times {\lfloor\frac{m}{kd}\rfloor} \sum_{i=1}^{d}{\mu(i)} \]

\(T=kd\)

\[ \sum_{T=1}^{n} {\lfloor\frac{n}{T}\rfloor} \times {\lfloor\frac{m}{T}\rfloor} \sum_{k|T,k \in Prime}{\mu(\frac{T}{k})} \]

End.


参考资料:
https://www.cnblogs.com/peng-ym/p/8647856.html

https://www.luogu.com.cn/article/djqcjqtk

posted @ 2025-07-30 09:16  Wy_x  阅读(6)  评论(0)    收藏  举报