【TinyWebServer】07定时器处理非活动连接(上)

基础知识

非活跃,是指客户端(这里是浏览器)与服务器端建立连接后,长时间不交换数据,一直占用服务器端的文件描述符,导致连接资源的浪费。

定时事件,是指固定一段时间之后触发某段代码,由该段代码处理一个事件,如从内核事件表删除事件,并关闭文件描述符,释放连接资源。

定时器,是指利用结构体或其他形式,将多种定时事件进行封装起来。具体的,这里只涉及一种定时事件,即定期检测非活跃连接,这里将该定时事件与连接资源封装为一个结构体定时器。

定时器容器,是指使用某种容器类数据结构,将上述多个定时器组合起来,便于对定时事件统一管理。具体的,项目中使用升序链表将所有定时器串联组织起来。

整体概述

本项目中,服务器主循环为每一个连接创建一个定时器,并对每个连接进行定时。另外,利用升序时间链表容器将所有定时器串联起来,若主循环接收到定时通知,则在链表中依次执行定时任务。

Linux下提供了三种定时的方法:

  • socket选项SO_RECVTIMEO和SO_SNDTIMEO
  • SIGALRM信号
  • I/O复用系统调用的超时参数

三种方法没有一劳永逸的应用场景,也没有绝对的优劣。由于项目中使用的是 SIGALRM信号,这里仅对其进行介绍,另外两种方法可以查阅游双的 Linux高性能服务器编程 第11章 定时器

具体的,利用 alarm函数周期性地触发 SIGALRM信号,信号处理函数利用管道通知主循环,主循环接收到该信号后对升序链表上所有定时器进行处理,若该段时间内没有交换数据,则将该连接关闭,释放所占用的资源。

从上面的简要描述中,可以看出定时器处理非活动连接模块,主要分为两部分,其一为定时方法与信号通知流程,其二为定时器及其容器设计与定时任务的处理。

主要内容

本篇将介绍定时方法与信号通知流程,具体的涉及到基础API、信号通知流程和代码实现。

基础API ,描述 sigaction结构体、sigaction函数、sigfillset函数、SIGALRM信号、SIGTERM信号、alarm函数、socketpair函数、send函数。

信号通知流程 ,介绍统一事件源和信号处理机制。

代码实现 ,结合代码对信号处理函数的设计与使用进行详解。

基础API

sigation结构体

struct sigaction {
    void (*sa_handler)(int);
    void (*sa_sigaction)(int, siginfo_t *, void *);
    sigset_t sa_mask;
    int sa_flags;
    void (*sa_restorer)(void);
}
  • sa_handler是一个函数指针,指向信号处理函数
  • sa_sigaction同样是信号处理函数,有三个参数,可以获得关于信号更详细的信息
  • sa_mask用来指定在信号处理函数执行期间需要被屏蔽的信号
  • sa_flags用于指定信号处理的行为
    • SA_RESTART,使被信号打断的系统调用自动重新发起
    • SA_NOCLDSTOP,使父进程在它的子进程暂停或继续运行时不会收到 SIGCHLD 信号
    • SA_NOCLDWAIT,使父进程在它的子进程退出时不会收到 SIGCHLD 信号,这时子进程如果退出也不会成为僵尸进程
    • SA_NODEFER,使对信号的屏蔽无效,即在信号处理函数执行期间仍能发出这个信号
    • SA_RESETHAND,信号处理之后重新设置为默认的处理方式
    • SA_SIGINFO,使用 sa_sigaction 成员而不是 sa_handler 作为信号处理函数
  • sa_restorer一般不使用

sigaction函数

#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
  • signum表示操作的信号。
  • act表示对信号设置新的处理方式。
  • oldact表示信号原来的处理方式。
  • 返回值,0 表示成功,-1 表示有错误发生。

sigfillset

#include <signal.h>

int sigfillset(sigset_t *set);

用来将参数set信号集初始化,然后把所有的信号加入到此信号集里。

SIGALRM、SIGTERM信号

#define SIGALRM  14     //由alarm系统调用产生timer时钟信号
#define SIGTERM  15     //终端发送的终止信号

alarm函数

#include <unistd.h>;

unsigned int alarm(unsigned int seconds);

设置信号传送闹钟,即用来设置信号SIGALRM在经过参数seconds秒数后发送给目前的进程。如果未设置信号SIGALRM的处理函数,那么alarm()默认处理终止进程.

socketpair函数

在linux下,使用socketpair函数能够创建一对套接字进行通信,项目中使用管道通信。

#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);
  • domain表示协议族,PF_UNIX或者AF_UNIX
  • type表示协议,可以是SOCK_STREAM或者SOCK_DGRAM,SOCK_STREAM基于TCP,SOCK_DGRAM基于UDP
  • protocol表示类型,只能为0
  • sv[2]表示套节字柄对,该两个句柄作用相同,均能进行读写双向操作
  • 返回结果, 0为创建成功,-1为创建失败

send函数

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

当套接字发送缓冲区变满时,send通常会阻塞,除非套接字设置为非阻塞模式,当缓冲区变满时,返回EAGAIN或者EWOULDBLOCK错误,此时可以调用select函数来监视何时可以发送数据。

信号通知流程

Linux下的信号采用的异步处理机制,信号处理函数和当前进程是两条不同的执行路线。具体的,当进程收到信号时,操作系统会中断进程当前的正常流程,转而进入信号处理函数执行操作,完成后再返回中断的地方继续执行。

为避免信号竞态现象发生,信号处理期间系统不会再次触发它。所以,为确保该信号不被屏蔽太久,信号处理函数需要尽可能快地执行完毕。

一般的信号处理函数需要处理该信号对应的逻辑,当该逻辑比较复杂时,信号处理函数执行时间过长,会导致信号屏蔽太久。

这里的解决方案是,信号处理函数仅仅发送信号通知程序主循环,将信号对应的处理逻辑放在程序主循环中,由主循环执行信号对应的逻辑代码。

统一事件源

统一事件源,是指将信号事件与其他事件一样被处理。

具体的,信号处理函数使用管道将信号传递给主循环,信号处理函数往管道的写端写入信号值,主循环则从管道的读端读出信号值,使用I/O复用系统调用来监听管道读端的可读事件,这样信号事件与其他文件描述符都可以通过epoll来监测,从而实现统一处理。

信号处理机制

每个进程之中,都有存着一个表,里面存着每种信号所代表的含义,内核通过设置表项中每一个位来标识对应的信号类型。

1694525383760

  • 信号的接收

    • 接收信号的任务是由内核代理的,当内核接收到信号后,会将其放到对应进程的信号队列中,同时向进程发送一个中断,使其陷入内核态。注意,此时信号还只是在队列中,对进程来说暂时是不知道有信号到来的。
  • 信号的检测

    • 进程陷入内核态后有两种场景会对信号进行检测:
      • 进程从内核态返回用户态前进行信号检测
      • 进程在内核态中,从睡眠状态被唤醒的时候进行信号检测
    • 当发现有新信号时,便后进入下一步信号的处理
  • 信号的处理

    • ( 内核 )信号处理函数是运行在用户态的,调用处理函数前,内核会将当前内核栈的内容备份拷贝到用户栈上,并且修改指令寄存器(eip)将其指向信号处理函数。
    • ( 用户 )接下来进程返回到用户态中,执行相应的信号处理函数。
    • ( 内核 )信号处理函数执行完成后,还需要返回内核态,检查是否还有其它信号未处理。
    • ( 用户 )如果所有信号都处理完成,就会将内核栈恢复(从用户栈的备份拷贝回来),同时恢复指令寄存器(eip)将其指向中断前的运行位置,最后回到用户态继续执行进程。

至此,一个完整的信号处理流程便结束了,如果同时有多个信号到达,上面的处理流程会在第2步和第3步骤间重复进行。

代码分析

信号处理函数

自定义信号处理函数,创建sigaction结构体变量,设置信号函数。

//信号处理函数
void sig_handler(int sig)
{
    //为保证函数的可重入性,保留原来的errno
    //可重入性表示中断后再次进入该函数,环境变量与之前相同,不会丢失数据
    int save_errno = errno;
    int msg = sig;

    //将信号值从管道写端写入,传输字符类型,而非整型
    send(pipefd[1], (char *)&msg, 1, 0);

    //将原来的errno赋值为当前的errno
    errno = save_errno;
}

信号处理函数中仅仅通过管道发送信号值,不处理信号对应的逻辑,缩短异步执行时间,减少对主程序的影响。

//设置信号函数
void addsig(int sig, void(handler)(int), bool restart = true)
{
    //创建sigaction结构体变量
    struct sigaction sa;
    memset(&sa, '\0', sizeof(sa));

    //信号处理函数中仅仅发送信号值,不做对应逻辑处理
    sa.sa_handler = handler;
    if (restart)
        sa.sa_flags |= SA_RESTART;
    //将所有信号添加到信号集中
    sigfillset(&sa.sa_mask);

    //执行sigaction函数
    assert(sigaction(sig, &sa, NULL) != -1);
}

项目中设置信号函数,仅关注SIGTERM和SIGALRM两个信号。

信号通知逻辑

  • 创建管道,其中管道写端写入信号值,管道读端通过I/O复用系统监测读事件

  • 设置信号处理函数SIGALRM(时间到了触发)和SIGTERM(kill会触发,Ctrl+C)

    • 通过struct sigaction结构体和sigaction函数注册信号捕捉函数
    • 在结构体的handler参数设置信号处理函数,具体的,从管道写端写入信号的名字
  • 利用I/O复用系统监听管道读端文件描述符的可读事件

  • 信息值传递给主循环,主循环再根据接收到的信号值执行目标信号对应的逻辑代码

代码分析

//创建管道套接字
ret = socketpair(PF_UNIX, SOCK_STREAM, 0, pipefd);
assert(ret != -1);

//设置管道写端为非阻塞,为什么写端要非阻塞?
setnonblocking(pipefd[1]);

//设置管道读端为ET非阻塞
addfd(epollfd, pipefd[0], false);

//传递给主循环的信号值,这里只关注SIGALRM和SIGTERM
addsig(SIGALRM, sig_handler, false);
addsig(SIGTERM, sig_handler, false);

//循环条件
bool stop_server = false;

//超时标志
bool timeout = false;

//每隔TIMESLOT时间触发SIGALRM信号
alarm(TIMESLOT);

while (!stop_server)
{
    //监测发生事件的文件描述符
    int number = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
    if (number < 0 && errno != EINTR)
    {
        break;
    }

    //轮询文件描述符
    for (int i = 0; i < number; i++)
    {
        int sockfd = events[i].data.fd;

        //管道读端对应文件描述符发生读事件
        if ((sockfd == pipefd[0]) && (events[i].events & EPOLLIN))
        {
            int sig;
            char signals[1024];

            //从管道读端读出信号值,成功返回字节数,失败返回-1
            //正常情况下,这里的ret返回值总是1,只有14和15两个ASCII码对应的字符
            ret = recv(pipefd[0], signals, sizeof(signals), 0);
            if (ret == -1)
            {
                // handle the error
                continue;
            }
            else if (ret == 0)
            {
                continue;
            }
            else
            {
                //处理信号值对应的逻辑
                for (int i = 0; i < ret; ++i)
                {
                    //这里面明明是字符
                    switch (signals[i])
                    {
                    //这里是整型
                    case SIGALRM:
                    {
                        timeout = true;
                        break;
                    }
                    case SIGTERM:
                    {
                        stop_server = true;
                    }
                    }
                }
            }
        }
    }
}

为什么管道写端要非阻塞?

send是将信息发送给套接字缓冲区,如果缓冲区满了,则会阻塞,这时候会进一步增加信号处理函数的执行时间,为此,将其修改为非阻塞。

没有对非阻塞返回值处理,如果阻塞是不是意味着这一次定时事件失效了?

是的,但定时事件是非必须立即处理的事件,可以允许这样的情况发生。

管道传递的是什么类型?switch-case的变量冲突?

信号本身是整型数值,管道中传递的是ASCII码表中整型数值对应的字符。

switch的变量一般为字符或整型,当switch的变量为字符时,case中可以是字符,也可以是字符对应的ASCII码。













转载文章:

最新版Web服务器项目详解 - 07 定时器处理非活动连接(上) (qq.com)

posted @ 2023-09-17 22:41  Emma1111  阅读(107)  评论(0)    收藏  举报