13. Spring AI 的观测性
13. Spring AI 的观测性
@
目录
观测性
为什么Spring AI应用急需可观测性?
AI服务成本失控的痛点
在企业级AI应用中,使用DeepSeek、OpenAI、Google Gemini或Azure OpenAI等服务时,成本控制是一个严峻挑战:
- Token消耗不透明:无法精确了解每次AI调用的成本
- 费用增长失控:大规模应用中,AI服务费用可能呈指数级增长
- 性能瓶颈难定位:AI调用链路复杂,问题排查困难
- 资源使用不合理:缺乏数据支撑的优化决策
Spring AI可观测性的价值
Spring AI的可观测性功能为这些痛点提供了完美解决方案:
- ✅精准Token监控:实时追踪输入/输出Token消耗,精确到每次调用
- ✅智能成本控制:基于使用统计制定成本优化策略
- ✅深度性能分析:识别AI调用瓶颈,优化响应时间
- ✅完整链路追踪:端到端记录请求在Spring AI应用中的完整流转
实战演练:构建可观测的Spring AI翻译应用
第一步:Spring AI项目初始化
在start.spring.io[1]创建Spring Boot项目,集成Spring AI核心依赖:
Maven依赖配置(Spring AI BOM管理):
<!--百炼-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!-- Spring Boot Actuator 监控 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<!--web-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
第二步:Spring AI客户端配置
主应用类配置:
@SpringBootApplication
publicclassSpringAiTranslationApplication {
publicstaticvoidmain(String[] args) {
SpringApplication.run(SpringAiTranslationApplication.class, args);
}
@Bean
public ChatClient chatClient(ChatClient.Builder builder) {
return builder.build();
}
}
Spring AI配置文件:
# Spring AI 可观测性配置
management:
endpoints:
web:
exposure:
include:"*"
endpoint:
health:
show-details:always
metrics:
export:
prometheus:
enabled:true
spring:
threads:
virtual:
enabled:true
ai:
deepseek:
api-key:${DEEPSEEK_API_KEY}
chat:
options:
model:deepseek-chat
temperature: 0.8
环境变量设置:
export DEEPSEEK_API_KEY=your-deepseek-api-key
第三步:构建Spring AI翻译服务
智能翻译控制器:
@RestController
@RequestMapping("/api/v1")
@RequiredArgsConstructor
@Slf4j
public class SpringAiTranslationController {
private final ChatModel chatModel;
@PostMapping("/translate")
public TranslationResponse translate(@RequestBody TranslationRequest request) {
log.info("Spring AI翻译请求: {} -> {}", request.getSourceLanguage(), request.getTargetLanguage());
String prompt= String.format(
"作为专业翻译助手,请将以下%s文本翻译成%s,保持原文的语气和风格:\n%s",
request.getSourceLanguage(),
request.getTargetLanguage(),
request.getText()
);
String translatedText= chatModel.call(prompt);
return TranslationResponse.builder()
.originalText(request.getText())
.translatedText(translatedText)
.sourceLanguage(request.getSourceLanguage())
.targetLanguage(request.getTargetLanguage())
.timestamp(System.currentTimeMillis())
.build();
}
}
@Data
@NoArgsConstructor
@AllArgsConstructor
@Builder
class TranslationRequest {
private String text;
private String sourceLanguage;
private String targetLanguage;
}
@Data
@NoArgsConstructor
@AllArgsConstructor
@Builder
class TranslationResponse {
private String originalText;
private String translatedText;
private String sourceLanguage;
private String targetLanguage;
private Long timestamp;
}
第四步:Spring AI翻译API测试
curl -X POST http://localhost:8080/api/v1/translate
-H "Content-Type: application/json"
-d '{
"text": "Spring AI makes AI integration incredibly simple and powerful",
"sourceLanguage": "英语",
"targetLanguage": "中文"
}'
# 响应示例
{
"originalText": "Spring AI makes AI integration incredibly simple and powerful",
"translatedText": "Spring AI让AI集成变得极其简单而强大",
"sourceLanguage": "英语",
"targetLanguage": "中文",
"timestamp": 1704067200000
}
Spring AI监控指标深度解析
核心指标1:Spring AI操作性能监控
指标端点:/actuator/metrics/spring.ai.chat.client
{
"name":"spring.ai.chat.client.operation",
"description":"Spring AI ChatClient操作性能指标",
"baseUnit":"seconds",
"measurements":[
{
"statistic":"COUNT",
"value":15
},
{
"statistic":"TOTAL_TIME",
"value":8.456780293
},
{
"statistic":"MAX",
"value":2.123904083
}
],
"availableTags":[
{
"tag":"gen_ai.operation.name",
"values":["framework"]
},
{
"tag":"spring.ai.kind",
"values":["chat_client"]
}
]
}
业务价值:
- 监控Spring AI翻译服务调用频次
- 分析Spring AI响应时间分布
- 识别Spring AI性能瓶颈
核心指标2:Spring AI Token使用量精准追踪
指标端点 /actuator/metrics/gen_ai.client.token.usage
{
"name":"gen_ai.client.token.usage",
"description":"Spring AI Token使用量统计",
"measurements":[
{
"statistic":"COUNT",
"value":1250
}
],
"availableTags":[
{
"tag":"gen_ai.response.model",
"values":["deepseek-chat"]
},
{
"tag":"gen_ai.request.model",
"values":["deepseek-chat"]
},
{
"tag":"gen_ai.token.type",
"values":[
"output",
"input",
"total"
]
}
]
}
成本控制价值:
- 精确计算Spring AI服务成本
- 优化Prompt设计降低Token消耗
- 制定基于使用量的预算策略
最后:
“在这个最后的篇章中,我要表达我对每一位读者的感激之情。你们的关注和回复是我创作的动力源泉,我从你们身上吸取了无尽的灵感与勇气。我会将你们的鼓励留在心底,继续在其他的领域奋斗。感谢你们,我们总会在某个时刻再次相遇。”


浙公网安备 33010602011771号