深度学习简介
一 Deep Leraning 的发展

二 深度学习的三大步骤

Step 1: Neural Network
每一个Logistic Regression 就是一个Neuron,不同的连接方式构成不同的Network。

Network 的连接方式有很多,而 Full Connect Feedforward Network 是一种最常见的方式。



一般的 Full Connect Feedforward Network的结构如下:

由以上延伸到Deep Learning,所谓的Deep 指的是 NetWork 中有很多的 Hidden Layers。

普遍规律是层数越高,准确率越高。

在NetWork中,常用的是矩阵运算,简单举例:

更为一般的运算示意图如下:

可以使用GPU加速矩阵的运算速度:

通常将输出层作为一个多分类来处理:

应用举例(手写数字识别):


NetWork 的结构应该怎么决定:

Step 2 :Goodness of function
一个样例的 Loss

总的 Loss

Step 3 :Pick the best function
还是可以使用梯度下降的方法反复计算得到 best function。




思考:


参考:http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/DL%20(v2).pdf

浙公网安备 33010602011771号