第四次作业:CNN实战

第四次作业:CNN实战

0x00样例

model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

下载torchvision中集成的vgg在ImageNet上的预训练模型,并且下载了ImageNet的1000分类的标签。将valid中第一个batch的图片放入预训练模型中进行测试。同时用softmax对预测概率进行归一化。得到预测结果

image-20211021102659817

对五张图片预测得到的结果分别是仓鼠、斑猫、斑猫、斑猫、黑足雪貂。

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

修改预训练的vgg的网络结构。首先param.requires_grad = Flases来冻结预训练模型中的权重,只对最后一个全连接层进行训练。

全连接层的out_features从1000改为2,以便于适应当前的二分类任务。同时加了一层Softmax函数来归一化。

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            if count % 256==0:
              print('Epoch: ', epoch, 'Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)

对冻结后的模型进行训练。训练一个epoch

image-20211021103826079

def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])

image-20211021104246841

测试得到的准确率为95.80%

# 单次可视化显示的图片个数
n_view = 8
wrongs = np.where(predictions!=all_classes)[0]
from numpy.random import random, permutation
idx = permutation(wrongs)[:n_view]
print('random wrong idx: ', idx)
loader_wrong = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                  batch_size = n_view,shuffle=True)
for data in loader_correct:
    inputs_wrg,labels_wrg = data
# Make a grid from batch
out = torchvision.utils.make_grid(inputs_wrg)
imshow(out, title=[l.item() for l in labels_wrg])

随机查看一些预测错误的数据

image-20211021104941044

0x01 测试

import numpy as np
import os
import glob
import torch
import torch.nn as nn
import torchvision
from torchvision import models, transforms, datasets
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './data/cat_dog'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'val']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'val']}
dset_classes = dsets['train'].classes

loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=128, shuffle=True, num_workers=2)
loader_valid = torch.utils.data.DataLoader(dsets['val'], batch_size=32, shuffle=False, num_workers=2)

model_vgg = models.vgg16(pretrained=True)
print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())
model_vgg_new = model_vgg_new.to(device)
print(model_vgg_new.classifier)

criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.Adam(model_vgg_new.classifier.parameters(),lr = lr)

def adjust_learning_rate(optimizer, epoch):
  global lr
  l_r = lr * (0.1 ** (epoch // 30))
  for param_group in optimizer.param_groups:
    print(param_group)
    param_group['lr'] = l_r

def train_model(model,dataloader,size,epochs=80,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        adjust_learning_rate(optimizer_vgg, epoch)
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            if count % 2560==0:
              print('Epoch: ', epoch, 'LR:', optimizer.param_groups[0]['lr'], 'Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss*10000, epoch_acc))
        if epoch % 10 == 0:
          torch.save(model, "./vgg_ep" + str(epoch) + ".pth")
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=301, 
            optimizer=optimizer_vgg)

def adjust_learning_rate(optimizer, epoch):
    """
    动态调整学习率
    """
	global lr
	l_r = lr * (0.1 ** (epoch // 30))
	for param_group in optimizer.param_groups:
		param_group['lr'] = l_r
  • 将优化器从SGD改为Adam

  • 采用动态学习率,每训练30个epoch将学习率调小(*0.1)

  • 将epochs调整到301

image-20211022233358029

效果98.45%

posted @ 2021-10-22 23:44  小渔村x  阅读(107)  评论(0)    收藏  举报