隐函数定理
\(\bf Theorem\;1.\quad\)设 \(\Omega\in\mathbb R^m\times\mathbb R^n\) 为开集,\(\boldsymbol F(\boldsymbol x,\boldsymbol y)\)(其中 \(\boldsymbol x\in\mathbb R^m,\boldsymbol y\in\mathbb R^n\))满足 \(\boldsymbol F(\boldsymbol x,\boldsymbol y)\in C^1(\Omega,\mathbb R^n)\)。设点 \((\boldsymbol x_0,\boldsymbol y_0)\in\Omega\),若 \(\boldsymbol F(\boldsymbol x_0,\boldsymbol y_0)=\boldsymbol 0\),且
\[\det\text D_y\boldsymbol F(\boldsymbol x_0,\boldsymbol y_0)=\frac{\partial(F_1,\cdots,F_n)}{\partial(y_1,\cdots,y_n)}\Bigg|_{(\boldsymbol x_0,\boldsymbol y_0)}\neq0,
\]
则存在一个邻域 \(U(\boldsymbol x_0)\in\mathbb R^m\) 及唯一 \(\boldsymbol\varphi(\boldsymbol x)\) 满足
\[\boldsymbol\varphi(\boldsymbol x)\in C^1(U(\boldsymbol x_0),\mathbb R^n)
\]
使 \(\forall\boldsymbol x_1\in U(\boldsymbol x_0),(\boldsymbol x_1,\boldsymbol\varphi(\boldsymbol x_1))\in\Omega\),且
\[\begin{aligned}
\boldsymbol F(\boldsymbol x_1,\boldsymbol\varphi(\boldsymbol x_1))=\text D_x\boldsymbol F(\boldsymbol x_1,\boldsymbol\psi(\boldsymbol x_1))+\text D_y\boldsymbol F(\boldsymbol x_1,\boldsymbol\psi(\boldsymbol x_1))\text D\boldsymbol\varphi(\boldsymbol x_1)=\boldsymbol 0,
\end{aligned}
\]
并且有
\[\text D\boldsymbol\varphi(\boldsymbol x_1)=-\frac{\text D_x\boldsymbol F(\boldsymbol x_1,\boldsymbol\varphi(\boldsymbol x_1))}{\text D_y\boldsymbol F(\boldsymbol x_1,\boldsymbol\varphi(\boldsymbol x_1))}.
\]
复合依赖关系
记 \(\mathbb R(\!\!\{\!\mathcal X\!\}\!\!)\) 为 \(\mathbb R\) 上以 \(\mathcal X\) 为变元集的形式多元函数。对于 \(\mathbb R(\!\!\{\!\mathcal X\!\}\!\!)\) 定义“代入算符”\((\circ)\),其中 \(\circ\) 属于 \(\prod_{j\leq|\mathcal X|}\mathbb R(\!\!\{\!\mathcal Y_J\!\}\!\!)\) 或 \(\mathbb R^{|\mathcal X|}\),表示将 \(f\in\mathbb R(\!\!\{\!\mathcal X\!\}\!\!)\) 中的变元逐维用 \(\circ\) 代入,映至 \(\mathbb R\big(\!\!\big\{\!\coprod_{j\leq|\mathcal X|}\mathcal Y_J\!\big\}\!\!\big)\) 或 \(\mathbb R\)。
下面变元在 \(\mathcal Z=\{X_1,\cdots,X_n\}\) 中取,考虑 \(\mathbb R(\!\!\{\!\mathcal X_{i}\!\}\!\!):=\mathbb R(\!\!\{\!X_1,\cdots,X_{i-1},X_{i+1},\cdots,X_n\!\}\!\!)\) 为 \(\mathbb R\) 上以 \(\mathcal X_i\) 为变元集的形式 \(n-1\) 元函数的集合,记算子
\[\text D_{X_j}:=\frac{\partial}{\partial X_j}:\quad\mathbb R(\!\!\{\!\mathcal X_{k}\!\}\!\!)\to\mathbb R(\!\!\{\!\mathcal X_k\!\}\!\!),\;(k\neq j)
\]
为对分量 \(X_j\) 的形式偏导数。
现有形式函数 \(f\in\mathbb R(\!\!\{\!\mathcal Z\!\}\!\!)\),考虑商集
\[\mathbb R(\!\!\{\!\mathcal Z\!\}\!\!)/[f]:=\mathbb R(\!\!\{\!\mathcal Z\!\}\!\!)\big/\sim
\;:\quad f\sim 0.
\]
在此商集下,可解出 \(n\) 个形式 \(n-1\) 元函数
\[\widetilde{x_i}\in R(\!\!\{\!\mathcal X_{i}\!\}\!\!):X_i\sim\widetilde{x_i}.
\]
从而商集下有等式
\[\widetilde{x_i}\;\sim\;\widetilde{x_i}(\widetilde{x_1},\cdots,\widetilde{x_{i-1}},\widetilde{x_{i+1}},\cdots,\widetilde{x_n}),
\]
记 \(\boldsymbol x_i=(\widetilde{x_1},\cdots,\widetilde{x_{i-1}},\widetilde{x_{i+1}},\cdots,\widetilde{x_n})\in R(\!\!\{\!\mathcal Z\!\}\!\!)^{n-1},\boldsymbol x=(\widetilde{x_i})_{i\leq n}\),两端求偏导数得
\[\frac{\partial\widetilde{x_i}}{\partial X_k}\sim\sum_{j=1}^{n}\frac{\partial\widetilde{x_i}}{\partial X_j}(\boldsymbol x_i)\frac{\partial\widetilde{x_j}}{\partial X_k}.
\]
留意到 \(X_i\sim\widetilde{x_i}\) 蕴含 \(\text D_{X_i}\widetilde{x_i}=1\),因此上式给出:在商集 \(\mathbb R(\!\!\{\!\mathcal Z\!\}\!\!)/[f]\) 中有
\[\sum_{j\neq k}\frac{\partial}{\partial X_j}(\boldsymbol x)\frac{\partial\widetilde{x_j}}{\partial X_k}\sim\sum_{j\neq i}\frac{\partial}{\partial X_j}(\boldsymbol x)\frac{\partial\widetilde{x_j}}{\partial X_k}\in[0].
\]
练习
\(\bf Example\;1.\quad\)证明:由方程 \(y=x\varphi(z)+\psi(z)\) 确定的二元函数 \(z:=z(x,y)\) 满足方程
\[\left(\frac{\partial z}{\partial y}\right)^2\frac{\partial^2z}{\partial x^2}-2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}\frac{\partial^2z}{\partial x\partial y}+\left(\frac{\partial z}{\partial x}\right)^2\frac{\partial^2z}{\partial y^2}=0.
\]
\(\bf Example\;2.\quad\)解出关于 \(y:=y(x,z)\) 的方程
\[\left(\frac{\partial z}{\partial y}\right)^2\frac{\partial^2z}{\partial x^2}-2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}\frac{\partial^2z}{\partial x\partial y}+\left(\frac{\partial z}{\partial x}\right)^2\frac{\partial^2z}{\partial y^2}=0.
\]