随笔分类 - 1.————数据结构————
摘要:并查集,不仅记fa,还记与fa的距离,还记根对应的尾节点 路径压缩的时候更新那个距离就行了
阅读全文
摘要:设s[x][i]表示从根到x的异或和在第i位上的值(0/1),(a,b,i)表示a到b的异或和在第i位上的值那么就有(a,b,i)=(s[a][i]^s[b][i]^s[lca][i]^s[lca][i])=(s[a][i]^s[b][i])也就是说,能搞出来s[a][i]和s[b][i]的相同或不
阅读全文
摘要:注意到,所有的-1应该是一个不降的序列,否则不会更优那就先求出来不是-1的的逆序对个数,然后设f[i][j]表示第i个-1放成j的前i个-1带来的最小逆序对数量这个可以树状数组来求
阅读全文
摘要:luogu1415 拆分数列的加强版 先考虑弱化版怎么做 设f[i]表示某一串数,最后一个数的右端点是i时,它的左端点的最大值(也就是说,这一串数的最后一个数尽量小) 那么有$f[j]=max\{i+1|num[i+1,j]>num[f[i],i]\}$ 这样推下去,f[N]就是最后一个数的最小值
阅读全文
摘要:用线段树记每个子树中包含的数,然后合并的时候算出来逆序对的数量(合并a,b时,就是size[ch[a][1]]*size[ch[b][0]]),来决定这个子树要不要翻转
阅读全文
摘要:反正先求一遍sa 然后这个问题可以稍微转化一下 默认比较A、B数组中元素的大小都是比较它们rank的大小,毕竟两个位置的LCP就是它们rank的rmq 然后每次只要求B[j]>=A[i]的LCP(B[j],A[i]),然后再求A[j]>B[i]的LCP(A[j],B[i])即可 这两个其实是差不多的
阅读全文
摘要:用一个树状数组维护前缀和,每次我二分地找一个位置,使得我能一路买过去 但这个买不了 那以后肯定也都买不了了,就把它改成0,再从头二分地找下一个位置,直到这一圈我可以跑下来 然后就看跑这一圈要花多少钱、能买多少糖,拿T除一除,减一减,再去跑下一圈 每个位置只会被删一次,所以复杂度是$O(nlog^2n
阅读全文
摘要:这题我是离线做的 设i位置的数上次出现的位置是pre[i](如果第一次出现那就是0) 可以想到,用线段树维护一个区间的pre的最小值,如果它小于区间左端点,那这个数就是一个合法的答案 但直接这样做是错的 考虑1,2,3,4,[1,1],5,虽然前一个1的pre在区间外面,但他后面还有一个1啊 所以可
阅读全文
摘要:先把区间按照长度从小到大排序,然后用尺取法来做 大概就是先一点一点把区间算上 直到某个点被覆盖了m次,然后一点一点把最前面的区间扔掉,直到没有点被覆盖m次,这样反复做(相当于是它选择的区间左右端点在那里摩擦) 判断有没有点被覆盖m次可以用线段树来做
阅读全文
摘要:单调栈维护栈顶为高度最大的 记下来栈中每个元素入栈时顶掉的最靠左的一个位置(如果没顶掉就是它本身),那么在它出栈的时候,它所带来的面积就是(出栈位置-记录位置)*高度 (可能会有加一减一之类的细节)
阅读全文
摘要:先预处理出来从每个位置 以0开始 往右交替最多能放多少格 然后就相当于对每一列做HISTOGRA
阅读全文
摘要:他要求的就是lcp(x,y)>=i的(x,y)的个数和a[x]*a[y]的最大值 做一下后缀和,就只要求lcp=i的了 既然lcp(x,y)=min(h[rank[x]+1],..,[h[rank[y]]]) 那么我们求出来对于每一个h,以它作为最小值的区间的左右端点就可以了,这个可以用单调栈,具体
阅读全文
摘要:我们发现,这个染色的操作他就很像LCT中access的操作(为什么??),然后就自然而然地想到,其实一个某条路径上的颜色数量,就是我们做一个只有access操作的LCT,这条路径经过的splay的数量 然后考虑怎么样来维护这个数量。access的过程中,有实边变虚边、虚边变实边的操作,对应过来,实边
阅读全文
摘要:首先可以求出从某点做$2^k$次车能到的最浅的点,这个只要dfs一下,把它的孩子能到的最浅的点更新过来就可以 然后倍增地往上跳,不能跳到lca的上面,记录坐车的次数ans 此时有三种情况(设最远能跳到x,y): 1.再跳也跳不到lca的上面,就是-1 2.路径(x,y)被某趟车覆盖,答案是ans+1
阅读全文
摘要:容易得出,如果我们按照深度一层一层地做,做完一层后,这层某个点的答案就是它的祖先们的子树大小(统计大小时不包括树根) 由于我太菜了不会别的方法,虽然N是5e5的,还是只好用一个树剖(树状数组降常数)水过去了 就是统计到某个点的时候把它的父亲到根+1
阅读全文
摘要:先用kruskal处理出一个最小生成树 对于非树边,倍增找出两端点间的最大边权-1就是答案 对于树边,如果它能被替代,就要有一条非树边,两端点在树上的路径覆盖了这条树边,而且边权不大于这条树边 这里可以树剖来做,但是不想用.. 如果先把非树边从小到大排序然后去覆盖树边,那么一条树边只需要被覆盖一次
阅读全文
摘要:《Segment tree Beats!》,反正我不会
阅读全文
摘要:把式子展开以后会发现,可以用线段树维护$x,y,x*y,x^2$分别的区间和 然后操作有区间加和区间修改 这个pushdown的时候,如果改和加的标记同时存在,那一定是先改再加,要不然加的标记已经被清掉了 所以在pushdown的时候,如果有改的标记,要把孩子的加的标记清掉 然后注意细节就行了(用*
阅读全文
摘要:带修改区间K大值 这题有很多做法,我的做法是树状数组套权值线段树,修改查询的时候都是按着树状数组的规则找出那log(n)个线段树根,然后一起往下做 时空都是$O(nlog^2n)$的(如果离散化了的话),空间可能会被卡,但实际上点数不用开到特别大,N*200也能过
阅读全文
摘要:首先如果没有出现次数的限制的话,这题就是超级钢琴 但由于有了这个限制,不能简单地用前缀和 考虑顺着做的时候每个点的贡献,如果a[i]=x,x上次出现位置是lst[x](可以用一个map来记),那它会给右端点为[i,N],左端点为[lst[x]+1,i]的区间带来x的贡献 根据szr巨佬的说法,主席树
阅读全文

浙公网安备 33010602011771号