04 2016 档案

摘要:$$\Large\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x~,~z 0\, ,\, t\in N^{ }$$ $\Large\mathbf{Solution:}$ Notice that $$\begin{align } \i 阅读全文
posted @ 2016-04-27 19:46 Renascence_5 阅读(1042) 评论(0) 推荐(1)
摘要:$$\Large\sum_{k=1}^{\infty}\frac{(2^{2k 1} 2)(4^{2k+1} 3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)$$ $\Large\mathbf{Solution:}$ Within the interval $\displa 阅读全文
posted @ 2016-04-27 19:12 Renascence_5 阅读(533) 评论(0) 推荐(0)
摘要:$$\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2}(3)$$ $\Large\mathbf{Proof:}$ We use the Abel's r 阅读全文
posted @ 2016-04-27 18:58 Renascence_5 阅读(472) 评论(0) 推荐(0)
摘要:$$\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)$$ $\Large\mathbf{Proof:}$ Let $\displaystyle S_1=\sum_{n=1}^\infty \frac{H_n 阅读全文
posted @ 2016-04-27 17:25 Renascence_5 阅读(517) 评论(0) 推荐(0)
摘要:$$\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1 x^{2}}}\mathrm{d}x$$ $\Large\mathbf{Solution:}$ 首先第一种做法,含参积分.不多说直接上图 第二种方法则是利用级数,易知 $$\begin{align } \int 阅读全文
posted @ 2016-04-27 12:43 Renascence_5 阅读(6310) 评论(0) 推荐(0)
摘要:$$\Large\int_{0}^{\pi }\theta \ln\tan\frac{\theta }{2}\mathrm{d}\theta $$ $\Large\mathbf{Solution:}$ 显然 $$\int_{0}^{\pi }\theta \ln\tan\frac{\theta }{ 阅读全文
posted @ 2016-04-26 21:39 Renascence_5 阅读(621) 评论(0) 推荐(0)
摘要:1.Table of Integrals,Series and Products , Eighth Edition , I.S.Gradshteyn, I.M.Ryzhik 这就是众所周知的"积分大典",也是最新版,包含了巨量的积分公式,绝对是值得拥有的,遗憾的是只有公式,没有证明,当然,在书的开头 阅读全文
posted @ 2016-04-26 21:00 Renascence_5 阅读(1574) 评论(0) 推荐(0)
摘要:$$\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}$$ $\Large\mathbf{Solution:}$ Let $$\mathcal{S}=\sum^\infty_{n=1}\frac{H_n}{n^42^n}$$ We first conside 阅读全文
posted @ 2016-04-26 20:16 Renascence_5 阅读(810) 评论(0) 推荐(0)
摘要:$$\Large\int_{0}^{1}\frac{\ln^{2}\left ( x \right )\mathrm{Li}_{2}\left ( x \right )}{1 x}\mathrm{d}x= 11\zeta \left ( 5 \right )+6\zeta \left ( 3 \ri 阅读全文
posted @ 2016-04-26 19:52 Renascence_5 阅读(1351) 评论(0) 推荐(0)
摘要:$$\Large\int_0^1\frac{\ln^3(1+x)\ln x}x\mathrm dx$$ $\Large\mathbf{Solution:}$ Start with integration by parts (IBP) by setting $u=\ln^3(1+x)$ and $\m 阅读全文
posted @ 2016-04-26 16:51 Renascence_5 阅读(2352) 评论(0) 推荐(0)
摘要:$$\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\mathbf{G} \frac{7\pi}{32}\zeta(3)$$ $\Large \mathrm 阅读全文
posted @ 2016-04-25 19:30 Renascence_5 阅读(1336) 评论(0) 推荐(1)
摘要:首先我们定义 $$\begin{align } { \Large {L\left[ \begin{matrix} a,b,c \\ d,e,f \end{matrix};z\right] =\int_0^z \frac{\ln^a x \ln^b(1 x)\ln^c(1+x)}{x^d (1 x)^ 阅读全文
posted @ 2016-04-25 18:39 Renascence_5 阅读(1990) 评论(0) 推荐(1)
摘要:方法1: 因为积分值只与被积函数和积分域有关,与积分变量无关,所以 $$I^{2}=\left ( \int_{0}^{\infty }e^{ x^{2}}\mathrm{d}x \right )^{2}=\int_{0}^{\infty }e^{ x^{2}}\mathrm{d}x~~\cdot 阅读全文
posted @ 2016-04-25 18:18 Renascence_5 阅读(13627) 评论(1) 推荐(2)
摘要:利用 $$\sum_{j=1}^{n}\frac{\left ( 1 \right )^{j 1}}{j}=\ln 2+\left ( 1 \right )^{n 1}\int_{0}^{1}\frac{x^{n}}{1+x}\, \mathrm{d}x$$ 我们有 $$\begin{align } 阅读全文
posted @ 2016-04-25 15:57 Renascence_5 阅读(505) 评论(1) 推荐(1)