复杂的对数积分(二)

\[\Large\int_{0}^{1}\frac{\ln^{2}\left ( x \right )\mathrm{Li}_{2}\left ( x \right )}{1-x}\mathrm{d}x=-11\zeta \left ( 5 \right )+6\zeta \left ( 3 \right )\zeta \left ( 2 \right ) \]


\(\Large\mathbf{Proof:}\)

\[\begin{align*} \int_{0}^{1}\frac{\ln^{2}\left ( x \right )\mathrm{Li}_{2}\left ( x \right )}{1-x}\mathrm{d}x &=\int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\sum_{n=1}^{\infty }\frac{x^{n}}{n^{2}}\mathrm{d}x \\ &=\int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\left [ \sum_{n=1}^{\infty }\frac{1}{n^{2}}-\sum_{n=1}^{\infty }\frac{1-x^{n}}{n^{2}} \right ]\mathrm{d}x \\ &=\zeta \left ( 2 \right )\int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\mathrm{d}x-\int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\sum_{n=1}^{\infty }\frac{1-x^{n}}{n^{2}}\mathrm{d}x \end{align*}\]

However,

\[\begin{align*} \int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\mathrm{d}x&=\int_{0}^{1}\ln\left ( 1-x \right )\left [ 2\ln\left ( x \right )\frac{1}{x} \right ]\mathrm{d}x=-2\int_{0}^{1}\mathrm{Li}{}'_{2}\left ( x \right )\ln\left ( x \right )\mathrm{d}x \\ &=2\int_{0}^{1}\mathrm{Li}_{2}\left ( x \right )\frac{1}{x}\mathrm{d}x=2\int_{0}^{1}\mathrm{Li}{}'_{3}\left ( x \right )\mathrm{d}x=2\mathrm{Li}_{3}\left ( 1 \right )=2\zeta \left ( 3 \right ) \end{align*}\]

Such that

\[\int_{0}^{1}\frac{\ln^{2}\left ( x \right )\mathrm{Li}_{2}\left ( x \right )}{1-x}\mathrm{d}x=2\zeta \left ( 2 \right )\zeta \left ( 3 \right )-\int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\sum_{n=1}^{\infty }\frac{1-x^{n}}{n^{2}}\mathrm{d}x \]

Also

\[\begin{align*} \int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\sum_{n=1}^{\infty }\frac{1-x^{n}}{n^{2}}\mathrm{d}x &=\sum_{n=1}^{\infty }\frac{1}{n^{2}}\int_{0}^{1}\ln^{2}\left ( x \right )\frac{1-x^{n}}{1-x}\mathrm{d}x \\ &=\sum_{n=1}^{\infty }\frac{1}{n^{2}}\int_{0}^{1}\ln^{2}\left ( x \right )\sum_{k=1}^{n}x^{k-1}\mathrm{d}x \\ &= \sum_{n=1}^{\infty }\frac{1}{n^{2}}\sum_{k=1}^{n}\underset{=\displaystyle \frac{2}{k^{3}}}{\underbrace{\int_{0}^{1}\ln^{2}\left ( x \right )x^{k-1}\mathrm{d}x}}=2\sum_{n=1}^{\infty }\frac{H_{n}^{\left ( 3 \right )}}{n^{2}} \end{align*}\]

The last sum can be evaluated with the generating function\(\displaystyle \sum_{n=1}^{\infty }x^{n}H_{n}^{\left ( 3 \right )}=\frac{\mathrm{Li}_{3}\left ( x \right )}{1-x}\).Namely

\[\begin{align*} \sum_{n=1}^{\infty }\frac{x^{n}}{n}H_{n}^{\left ( 3 \right )}&=\int_{0}^{x}\frac{\mathrm{Li}_{3}\left ( t \right )}{t}\mathrm{d}t+\int_{0}^{x}\frac{\mathrm{Li}_{3}\left ( t \right )}{1-t}\mathrm{d}t \\ &=\mathrm{Li}_{4}\left ( x \right )-\ln\left ( 1-x \right )\mathrm{Li}_{3}\left ( x \right )+\int_{0}^{x}\ln\left ( 1-t \right )\mathrm{Li}{}'_{3}\left ( t \right )\mathrm{d}t\\ &=\mathrm{Li}_{4}\left ( x \right )-\ln\left ( 1-x \right )\mathrm{Li}_{3}\left ( x \right )+\int_{0}^{x}\ln\left ( 1-t \right )\frac{\mathrm{Li}_{2}\left ( t \right )}{t}\mathrm{d}t \\ &=\mathrm{Li}_{4}\left ( x \right )-\ln\left ( 1-x \right )\mathrm{Li}_{3}\left ( x \right )+\int_{0}^{x}\mathrm{Li}_{2}\left ( t \right )\mathrm{Li}{}'_{2}\left ( t \right )\mathrm{d}t \\ &=\mathrm{Li}_{4}\left ( x \right )-\ln\left ( 1-x \right )\mathrm{Li}_{3}\left ( x \right )-\frac{1}{2}\mathrm{Li}_{2}^{2}\left ( x \right ) \end{align*}\]

\[\begin{align*} \sum_{n=1}^{\infty }\frac{H_{n}^{\left ( 3 \right )}}{n^{2}}&=\int_{0}^{1}\frac{\mathrm{Li}_{4}\left ( t \right )}{t}\mathrm{d}t-\int_{0}^{1}\frac{\ln\left ( 1-t \right )\mathrm{Li}_{3}\left ( t \right )}{t}\mathrm{d}t-\frac{1}{2}\int_{0}^{1}\frac{\mathrm{Li}_{2}^{2}\left ( t \right )}{t}\mathrm{d}t \\ &= \zeta \left ( 5 \right )+\mathrm{Li}_{2}\left ( 1 \right )\mathrm{Li}_{3}\left ( 1 \right )-\int_{0}^{1}\mathrm{Li}_{2}\left ( t \right )\frac{\mathrm{Li}_{2}\left ( t \right )}{t}\mathrm{d}t-\frac{1}{2}\int_{0}^{1}\frac{\mathrm{Li}_{2}^{2}\left ( t \right )}{t}\mathrm{d}t\\ &=\zeta \left ( 5 \right )+\zeta \left ( 2 \right )\zeta \left ( 3 \right ) -\frac{3}{2}\int_{0}^{1}\frac{\mathrm{Li}_{2}^{2}\left ( t \right )}{t}\mathrm{d}t \end{align*}\]

The last integral integrate once by parts,we find

\[\begin{align*} I &=\int_{0}^{1}\frac{\mathrm{Li}_{2}^{2}\left ( x \right )}{x}\mathrm{d}x=\int_{0}^{1}\mathrm{Li}_{2}\left ( x \right )\mathrm{d}\left ( \mathrm{Li}_{3}\left ( x \right ) \right ) \\ &=\mathrm{Li}_{2}\left ( 1 \right )\mathrm{Li}_{3}\left ( 1 \right )+\int_{0}^{1}\frac{\mathrm{Li}_{3}\left ( x \right )\ln\left ( 1-x \right )\mathrm{d}x}{x} \\ &=\zeta \left ( 2 \right ) \zeta \left ( 3 \right )-\sum_{n=1}^{\infty }\sum_{k=1}^{\infty }\frac{1}{n^{3}k\left ( n+k \right )} \end{align*}\]

where the last line is obtained by expanding \(\displaystyle \mathrm{Li}_{3}\left ( x \right )\) and \(\ln\left ( 1-x \right )\) into series and integrating. Now if we donote\(\displaystyle H_{n}=\sum_{k=1}^{n}\frac{1}{k}\) the \(n\)th harmonic number, the sum with respect to \(k\) can be written as$$\sum_{k=1}^{\infty }\frac{1}{k\left ( n+k \right )}=\frac{1}{n}\sum_{k=1}^{\infty }\left ( \frac{1}{k}-\frac{1}{n+k} \right )=\frac{H_{n}}{n}$$
so that$$I=\zeta \left ( 2 \right )\zeta \left ( 3 \right )-\sum_{n=1}^{\infty }\frac{H_{n}}{n^{4}}=2\zeta \left ( 2 \right )\zeta \left ( 3 \right )-3\zeta \left ( 5 \right )$$
so we have

\[\sum_{n=1}^{\infty }\frac{H_{n}^{\left ( 3 \right )}}{n^{2}}=\frac{11}{2}\zeta \left ( 5 \right )-2\left ( 2 \right )\zeta \left ( 3 \right ) \]

\[\Rightarrow \int_{0}^{1}\frac{\ln^{2}\left ( x \right )}{1-x}\sum_{n=1}^{\infty }\frac{1-x^{n}}{n^{2}}\mathrm{d}x=11\zeta \left ( 5 \right )-4\zeta \left ( 2 \right )\zeta \left ( 3 \right ) \]

Now we have the final result:

\[\boxed{\displaystyle \color{blue}{\int_{0}^{1}\frac{\ln^{2}\left ( x \right )\mathrm{Li}_{2}\left ( x \right )}{1-x}\mathrm{d}x=-11\zeta \left ( 5 \right )+6\zeta \left ( 3 \right )\zeta \left ( 2 \right )}} \]

posted @ 2016-04-26 19:52  Renascence_5  阅读(1265)  评论(0编辑  收藏  举报