一个级数(测试用)

利用

\[\sum_{j=1}^{n}\frac{\left ( -1 \right )^{j-1}}{j}=\ln 2+\left ( -1 \right )^{n-1}\int_{0}^{1}\frac{x^{n}}{1+x}\, \mathrm{d}x \]

我们有

\[\begin{align*} \sum_{k=1}^{\infty }\frac{\left ( -1 \right )^{k}}{k}\sum_{j=1}^{2k}\frac{\left ( -1 \right )^{j}}{j}&=\ln 2\sum_{k=1}^{\infty }\frac{\left ( -1 \right )^{k}}{k}-\sum_{k=1}^{\infty }\frac{\left ( -1 \right )^{k}}{k}\int_{0}^{1}\frac{x^{2k}}{1+x}\, \mathrm{d}x\\ &=\ln^22+\int_{0}^{1}\frac{1}{1+x}\sum_{k=1}^{\infty }\frac{\left ( -x^{2} \right )^{k}}{k}\, \mathrm{d}x\\ &=\ln^22-\int_{0}^{1}\frac{\ln\left ( 1+x^{2} \right )}{1+x}\, \mathrm{d}x\\ &=\ln^22+\frac{\pi ^{2}}{48}-\frac{3}{4}\ln^22\\ &=\frac{\pi ^{2}}{48}+\frac{1}{4}\ln^22 \end{align*}\]

posted @ 2016-04-25 15:57  Renascence_5  阅读(502)  评论(1)    收藏  举报