D. Inversion Value of a Permutation edu div2
题意:给出一个排列,其逆序值为:包含至少一个逆序对的子区间数量
给出n和k,要求构造一个长度为n的,逆序值为k的排列
很显然,如果一个排列内,若是有两个位置逆序,那么以这两个位置为起点,找到的所有子区间可能会重复
我们应当考虑最基本的事情:长度为n的排列,逆序值最大为多少?
很显然,倒过来排列为最大值,因此逆序值最大为:\(n*(n-1)/2\)
面对这种排列题,直接找式子来解,十分麻烦!
我们需要惯用一点的解法:
假设n=5,先建一个排列
5 4 3 2 1,此时值为10
对换一下最后两个:
5 4 3 1 2,发现值为9
再对换一下:
5 4 1 2 3,发现值变成7了
我们发现,第一次对换,只影响了第4,5个位置,减少了1的值
第二次对换影响第3,4,5个位置,减少了3的值
而\(n=2\)时,逆序值最大为1
而\(n=3\)时,逆序值最大为3
是不是有巧合?
再建一个排列
5 3 4 1 2,值为8
于是答案就显而易见了!
对于一个长度为\(n\)的排列,里面如果有长度为m的顺序块,那么其逆序值为:n的最大值 - m的最大值
有几块顺序块就减多少个
于是我们先判断,对于长度n的序列,构建逆序值为k的序列需要减去多少
即\(n*(n-1)/2-k\),以这个值为目标,去找
当然,你需要一个背包来判断这个值是否达到
代码:
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
#define ffp(x,y,z) for(ll (x) = (y);(x)<=(z);(x++))
#define ffs(x,y,z) for(ll (x) = (y);(x)>=(z);(x--))
#define ll long long int
#define q_ (qd())
const double ex = 1e-7;
const int iINF = 0x3f3f3f3f;
long long int qd() {
long long w = 1, c, ret;
while ((c = getchar()) > '9' || c < '0')
w = (c == '-' ? -1 : 1); ret = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
ret = ret * 10 + c - '0';
return ret * w;
}
int va[50];//长度为n的序列逆序值最大为
int dp[5000];//想取得逆序值为i,这一次,你需要取多长的排列长度,换句话说,你需要占用多长的连续快空间?
int tdp[5000];//你想取逆序值为i,你当前取了va[dp[i]]的逆序值,你下一次需要取多长的逆序值
//假设i==17 dp[i]==6,你这一次取的长度为6,你取了va[6]==15的长度,你还需要取2的长度,因此tdp[17]==2
int nowsum[5000];//减少i个逆序值,所需的最短排列长度为
void solve()
{
int n = q_;
int k = q_;
vector<int>num(n + 2, 0);
if (k > va[n])
{
cout << 0 << endl;
return;
}
vector<int>ans;
int vim = va[n] - k;//目标减少几个
if (nowsum[vim] > n)
{
cout << 0 << endl;
return;
}
while (vim)
{
ans.push_back(dp[vim]);
vim = tdp[vim];
}
int p = n;
for (auto e : ans)
{
for (int i = p - e + 1 ; i <= p; i++)
{
cout << i << ' ';
}
p = p - e;
}
if (p)
{
for (int i = p; i > 0; i--)
{
cout << i << ' ';
}
}
cout << endl;
return;
}
int main()
{
ffp(i, 1, 40)
{
va[i] = i * (i - 1) / 2;
}
//组成i最少需要几个
for (int i = 0; i <= 450; i++)
{
nowsum[i] = iINF;
dp[i] = iINF;
}
dp[0] = 0;
nowsum[0] = 0;
for (int i = 2; i <= 30; i++)
{
for (int j = 0; j <= 440; j++)
{
if (nowsum[j + va[i]] > nowsum[j] + i)
{
dp[j + va[i]] = i;
tdp[j + va[i]] = j;
nowsum[j + va[i]] = nowsum[j] + i;
}
}
}
int t = q_;
while (t--)
{
solve();
}
return 0;
}
/*
⡀⠎⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⣄⠃⠈⣶⡛⠿⠭⣉⠛⠿⡿⠛⠉⣀⣠⣤⣭⡏⠴⢀⣴⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣷⣱⣬⠛⠉⠀⠀⢠⠀⠀⠀⢀⣀⠀⠉⠿⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠈⡿
⠀⠀⠀⠀⠀⠀⠀⢀⢿⣿⣿⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠈⠳⠀⠀⠀⠻⣿⣿⣿⣿⣿⣿⠋⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠈
⠀⠀⠀⠀⠀⠀⠀⣸⠀⣿⣿⣿⣿⠟⠀⠀⠀⠂⠀⠀⢠⠀⠀⠀⠀⠀⠀⠀⠈⡀⠀⠀⠀⠻⣿⣿⣿⣿⣷⡀⠘
⠀⠀⠀⠀⠀⠀⠀⣧⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠙⣿⣿⣿⣿⣿⣄⣧
⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠈⢿⣿⣿⣿⣿⣿⣆
⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⢂⠻⣿⣿⣿⣿⣿⣄
⠀⠀⠀⠀⠀⣿⣿⣿⣿⣹⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⡄⠈⢿⣿⣿⣿⣿⣆
⠀⠀⠀⠀⣿⣿⣿⣿⠁⡇⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠐⠸⠀⠀⠻⣿⣿⣿⣆⢦
⠀⠀⢠⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⣼⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣧⠀⠀⠀⠀⠐⣇⠀⠀⠙⣿⣿⣿⡄⠙⣄
⠀⣴⣿⣿⣿⣿⠏⠀⢸⠀⠀⠀⠀⠀⠀⡿⢿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣃⣈⣦⠀⠀⠀⠀⢹⠀⠀⠀⠸⣿⣿⣿⠀⠀⠳⣀
⠋⣸⣿⣿⣿⡟⠀⠀⠀⡆⠀⠀⠀⠀⠀⡏⠙⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⢠⠀⠀⠀⢧⠀⠀⠀⠀⡇⠀⠀⠀⠘⣿⣿⣷⠀⠀⠘
⠀⣿⣿⣿⢩⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⣀⠀⢱⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠂⢀⣴⣶⣿⣿⡀⠀⠀⢻⠀⠀⠀⠀⠹⣿⣿⡄
⢸⣿⣿⠃⠈⠀⠀⢸⠀⣿⣆⠀⠀⠀⠀⣿⣿⣿⠷⠘⡀⠀⠀⠀⠀⠀⠀⢠⢹⡀⠈⡿⠻⣿⣛⢿⣿⣷⡀⠈⠀⠀⠀⠀⠀⢻⣿⣿
⣿⣿⣿⠀⠀⠀⠀⢸⠀⡇⣼⣄⠀⠀⠀⢻⣿⡄⠑⠑⣿⡀⠀⠀⠀⢀⠀⠂⠇⠀⠀⠖⠛⢿⣿⣿⣌⢿⣿⣿⡆⠀⠀⠀⠀⠀⣿⣿⡀
⣿⣿⡇⠀⠀⠀⠀⢸⠀⣾⣿⣿⡷⠿⣷⣤⣿⣿⡄⠀⠀⠀⠑⠤⡀⠀⠃⠀⠀⠀⠀⣿⣶⣿⣿⣿⣿⣆⠙⣿⣧⠀⠀⠀⠀⠀⣿⣿⡇
⣿⣿⠁⠀⠀⠀⠀⠘⣾⣿⣿⠁⣴⣿⣿⣿⣿⣿⣇⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠸⡏⠙⣿⠉⠻⣿⠀⠀⣿⠀⠀⠀⣄⠀⣿⢸⣷
⣿⣿⡇⠀⠀⠀⠀⠀⣿⣿⠁⠀⣿⣿⠋⣿⠏⠙⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⢀⢻⠀⠀⢀⡟⢀⣿⣸⢃⠟
⣿⣿⣿⠀⡄⠀⠀⠀⠘⠻⡄⠀⢹⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡘⠀⢀⣿⠃⣿⣿⡗⠁
⣧⣿⣿⣧⢹⡀⠀⠀⠀⠱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⣴⣿⣿⣾⣿⣿⣿
⢿⠘⣿⣿⣿⣿⣤⠀⠢⡀⠱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣵⣿⣿⣿⣿⣿⣿⣿⣿⣷
⠀⠉⣿⣿⣿⡿⣿⠻⣷⣬⣓⣬⣄⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠉⠈⠈⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⠃⠼⢉⣿⣿⣿⣿⣿⣿⣿
⠀⠀⣿⣿⣿⣷⠀⠀⠀⠘⣿⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⡏⠀⠀⢸⠀⢻⢿⣿⣿⡏⣿
⠀⢸⣿⣿⣿⣿⠀⠀⠀⠀⢻⣿⣿⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣴⣾⣿⣿⣿⣿⠀⠀⠀⢸⠀⠀⢸⣿⣿⠘⡀
⢦⡿⣿⣿⣿⢿⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣶⣶⣦⡄⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠘⡄⠀⠈⣿⣿⡄⠱
⣴⠛⣾⣿⣿⢸⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⡄⠀⠀⠀⠀⠀⠀⠀⣯⠛⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⣇⠀⠀⣿⣿⣿
⠿⠀⣿⣿⣿⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⠟⠰⡾⠃⠀⠀⠀⠀⠀⠀⠀⠙⡟⠀⢻⣿⣿⣿⣿⣿⡆⠀⠀⠀⠸⠀⠀⠸⣿⣿⣷
⠆⢳⣿⣿⡇⠀⠀⠀⠀⠀⠀⣿⣿⣿⠛⠿⠿⢿⡟⠀⠀⠉⠦⣀⡤⢶⠀⠖⠲⠶⠊⠀⠀⠀⢻⡛⠛⠛⣿⣿⠀⠀⠀⠀⠃⠀⠀⢿⣿⣿
*/

浙公网安备 33010602011771号