简正模小记
普物小笔记。
考察一个有着 \(n\) 个自由度的系统 \((\psi_1, \psi_2, \psi_3, \cdots, \psi_n)\),若其受以下运动方程约束:
\[\ddot \psi_i + \sum_{j = 1}^n A_{ij} \psi_j = 0,\qquad i = 1, 2, 3, \cdots, n
\]
我们令:
\[A = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n}\\
A_{21} & A_{22} & \cdots & A_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
A_{n1} & A_{n2} & \cdots & A_{nn}\\
\end{pmatrix}, \qquad
B = \begin{pmatrix}
B_{11} & B_{12} & \cdots & B_{1n}\\
B_{21} & B_{22} & \cdots & B_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
B_{n1} & B_{n2} & \cdots & B_{nn}\\
\end{pmatrix}
\]
即可将运动方程写成矩阵形式,即:
\[\begin{pmatrix}
\ddot \psi_1 \\ \ddot \psi_2 \\ \vdots \\ \ddot \psi_n
\end{pmatrix} + A \begin{pmatrix}
\psi_1 \\ \psi_2 \\ \vdots \\ \psi_n
\end{pmatrix} = 0
\]
则有:
\[\begin{align*}
\psi_i & = \sum_{j = 1}^n B_{ij} \cos(\omega_j t + \phi_j)\\
\ddot \psi_i & = - \sum_{j = 1}^n \omega_j^2 B_{ij} \cos(\omega_j t + \phi_j)\\
\end{align*}
\]
将上式带入运动方程中可得:
\[\begin{align*}
\ddot \psi_i + \sum_{j = 1}^n A_{ij} \psi_j & = \sum_{k = 1}^n A_{ik} \sum_{j = 1}^n B_{kj} \cos(\omega_j t + \phi_j) - \sum_{j = 1}^n \omega_j^2 B_{ij} \cos(\omega_j t + \phi_j)\\
& = \sum_{j = 1}^n \cos(\omega_j t + \phi_j) \sum_{k = 1}^n A_{ik} B_{kj} - \sum_{j = 1}^n \omega_j^2 B_{ij} \cos(\omega_j t + \phi_j)\\
& = \sum_{j = 1}^n \cos(\omega_j t + \phi_j) \left(\sum_{k = 1}^n A_{ik} B_{kj} - \omega_j^2 B_{ij}\right)\\
& = 0,\qquad i = 1, 2, 3, \cdots, n
\end{align*}
\]
又由于 \(\cos(\omega_j t + \phi_j)\) 间线性独立,则:
\[\sum_{k = 1}^n A_{ik} B_{kj} = \omega_j^2 B_{ij},\qquad i = 1, 2, 3, \cdots, n
\]
将其写成矩阵形式,即得:
\[\begin{pmatrix}
A_{i1} & A_{i2} & A_{i3} & \cdots & A_{in}
\end{pmatrix}
\begin{pmatrix}
B_{1j} \\ B_{2j} \\ B_{3j} \\ \vdots \\ B_{nj}
\end{pmatrix} = \omega_j^2 B_{ij}
\]
所以有:
\[\begin{pmatrix}
A_{i1} & A_{i2} & A_{i3} & \cdots & A_{in}
\end{pmatrix} B =
\begin{pmatrix}
\omega_1^2 B_{i1} & \omega_2^2 B_{i2} & \omega_3^2 B_{i3} & \cdots & \omega_n^2 B_{in}
\end{pmatrix}
\]
因此可得:
\[AB =
\begin{pmatrix}
\omega_1^2 B_{11} & \omega_2^2 B_{12} & \cdots & \omega_n^2 B_{1n}\\
\omega_1^2 B_{21} & \omega_2^2 B_{22} & \cdots & \omega_n^2 B_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
\omega_1^2 B_{n1} & \omega_2^2 B_{n2} & \cdots & \omega_n^2 B_{nn}\\
\end{pmatrix} = B
\begin{pmatrix}
\omega_1^2\\
& \omega_2^2\\
& & \omega_3^2\\
& & & \ddots\\
& & & & \omega_n^2
\end{pmatrix}
\]
又因为 \((\psi_1, \psi_2, \cdots, \psi_n)\) 线性无关,所以 \(\mathrm{rank}(B) = n\) 即 \(B^{-1}\) 存在,则:
\[B^{-1}AB = \mathrm{diag}(\omega_1^2 \quad \omega_2^2 \quad \omega_3^2 \quad \cdots \quad \omega_n^2)
\]
抽出 \(B\) 的列向量 \(v_1, v_2, \cdots, v_n\) 即 \((v_1~v_2~\cdots~v_n) = B\),则:
\[\begin{align*}
AB & = B~\mathrm{diag}(\omega_1^2 \quad \omega_2^2 \quad \omega_3^2 \quad \cdots \quad \omega_n^2)\\
& = (\omega_1^2 v_1 \quad \omega_2^2 v_2 \quad \omega_3^2 v_3 \quad \cdots \quad \omega_n^2 v_n)\\
& = (Av_1 \quad Av_2 \quad Av_3 \quad \cdots \quad Av_n)
\end{align*}
\]
因此 \((A - \omega_i^2 I_n) v_i = 0\),此时 \(\omega_i^2\) 为 \(A\) 的特征值,\(v_i\) 为其对应的特征向量。又有:
\[\psi_i = \sum_{j = 1}^n B_{ij} \cos(\omega_j t + \phi_j)
\]
将其写成矩阵形式,即得:
\[\begin{pmatrix}
\psi_1 \\ \psi_2 \\ \vdots \\ \psi_n
\end{pmatrix} = \begin{pmatrix}
B_{11} & B_{12} & \cdots & B_{1n}\\
B_{21} & B_{22} & \cdots & B_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
B_{n1} & B_{n2} & \cdots & B_{nn}\\
\end{pmatrix}
\begin{pmatrix}
\cos(\omega_1 t + \phi_1)\\
\cos(\omega_2 t + \phi_2)\\
\vdots\\
\cos(\omega_n t + \phi_n)\\
\end{pmatrix} = B \begin{pmatrix}
\cos(\omega_1 t + \phi_1)\\
\cos(\omega_2 t + \phi_2)\\
\vdots\\
\cos(\omega_n t + \phi_n)\\
\end{pmatrix}
\]
又因为 \((v_1~v_2~\cdots~v_n) = B\),所以可将上式重写为:
\[\begin{pmatrix}
\psi_1 \\ \psi_2 \\ \vdots \\ \psi_n
\end{pmatrix} = B \begin{pmatrix}
\cos(\omega_1 t + \phi_1)\\
\cos(\omega_2 t + \phi_2)\\
\vdots\\
\cos(\omega_n t + \phi_n)\\
\end{pmatrix} = \begin{pmatrix}
v_1 & v_2 & \cdots & v_n
\end{pmatrix} \begin{pmatrix}
\cos(\omega_1 t + \phi_1)\\
\cos(\omega_2 t + \phi_2)\\
\vdots\\
\cos(\omega_n t + \phi_n)\\
\end{pmatrix} = \sum_{i = 1}^n v_i \cos(\omega_i t + \phi_i)
\]
其中 \(v_i \cos(\omega_i t + \phi_i)\) 即为假设所有自由度均以圆频率 \(\omega_i\) 和初相位 \(\phi_i\) 振动时所求出的特解,也即圆频率为 \(\omega_i\) 的简正模式,\(v_i\) 即为该模式下各个自由度上振动的振幅所组成的列向量。

浙公网安备 33010602011771号