中科大「数学分析教程——上册」习题选做

1.6 节

\(\mathbf{Problem\ 1}\) 解:

\[\begin{align*} &(1). \lim_{n \rightarrow \infty}\left(1 + \frac{1}{n - 2}\right)^n & = &\lim_{n \rightarrow \infty}\left(1 + \frac{1}{n - 2}\right)^{n - 2} \left(1 + \frac{1}{n - 2}\right)^2 \\ && = &\lim_{n \rightarrow \infty}\left(1 + \frac{1}{n - 2}\right)^{n - 2} \cdot \lim_{n \rightarrow \infty}\left(1 + \frac{1}{n - 2}\right)^2 \\ && = &\ \left(1 + \lim_{n \rightarrow \infty}\frac{1}{n - 2}\right)^2 e \\ && = &\ e \\ &(3). \lim_{n \rightarrow \infty}\left(\frac{1 + n}{2 + n}\right)^n & = &\ \frac{1}{\lim_{n \rightarrow \infty}\left(1 + \frac{1}{n + 1}\right)^n} \\ && = &\ \frac{1}{\lim_{n \rightarrow \infty}\left(1 + \frac{1}{n + 1}\right)^{n + 1} \cdot \lim_{n \rightarrow \infty}\left(1 + \frac{1}{n + 1}\right)^{-1}} \\ && = &\ \frac{1}{\left(1 + \lim_{n \rightarrow \infty}\frac{1}{n + 1}\right)^{-1}e} \\ && = &\ \frac{1}{e} \\ &(5). \lim_{n \rightarrow \infty}\left(1 + \frac{1}{2n^2}\right)^{4n^2} & = &\lim_{n \rightarrow \infty}\left(\left(1 + \frac{1}{2n^2}\right)^{2n^2}\right)^2 \\ && = &\left(\lim_{n \rightarrow \infty}\left(1 + \frac{1}{2n^2}\right)^{2n^2}\right)^2 \\ && = &\ e^2 \\ \end{align*} \]

\(\mathbf{Problem\ 3}\) 证明:

​ 由平均值不等式:

\[\left(1 + \frac{1}{n}\right)^n < \left(\frac{1 + n(1 + 1/n)}{n + 1}\right)^{n + 1} = \left({1 + \frac{1}{n + 1}}\right)^{n + 1} \]

​ 故 \(\{(1 + \frac{1}{n})^n\}\) 单调递增。

\(\mathbf{Problem\ 6}\) 证明:

​ 由 \(\mathbf{Problem\ 3}\) 得:

\[\left(1 + \frac{1}{n}\right)^n < \lim_{n \rightarrow \infty}\left(1 + \frac{1}{n}\right)^n = e \]

​ 注意到由调和—几何平均不等式:

\[\left(1 + \frac{1}{n}\right)^{n + 1} > \left(\frac{n + 2}{1 + (n + 1) \cdot \frac{n}{n + 1}}\right)^{n + 2} = \left(1 + \frac{1}{n + 1}\right)^{n + 2} \]

​ 故有:

\[\left(1 + \frac{1}{n}\right)^{n + 1} > \lim_{n \rightarrow \infty}\left(1 + \frac{1}{n}\right)^{n + 1} = e \]

​ 对上述两不等式左右式同时取对数,可得:

\[\begin{align*} n\ln\left(1 + \frac{1}{n}\right) & = \ln\left(\left(1 + \frac{1}{n}\right)^n\right) < 1 \\ (n + 1)\ln\left(1 + \frac{1}{n}\right) & = \ln\left(\left(1 + \frac{1}{n}\right)^{n + 1}\right) > 1 \end{align*} \]

​ 即得:

\[\frac{1}{n + 1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n} \]

\(\mathbf{Problem\ 8}\) 证明:

​ 由 \(\mathbf{Problem\ 6}\) 得:

\[\frac{1}{n + 1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n} \]

​ 又有:

\[\sum_{i = 1}^n \ln\left(1 + \frac{1}{i}\right) = \sum_{i = 1}^n \ln\left(\frac{i + 1}{i}\right) = \ln\left(\prod_{i = 1}^n\frac{i + 1}{i}\right) = \ln(n + 1) \]

​ 故有:

\[\sum_{i = 1}^n \frac{1}{i + 1} < \ln(n + 1) < \sum_{i = 1}^n \frac{1}{i} \]

\(\mathbf{Problem\ 10}\) 证明:

​ 令:

\[x_n = \sum_{i = 1}^n \frac{1}{i} - \ln(n + 1) \]

\(\mathbf{Lemma.}\) \(\{x_n\}\) 收敛,下证该结论:

​ 由 \(\mathbf{Problem\ 8}\) 得:

\[\sum_{i = 1}^n \frac{1}{i + 1} < \ln(n + 1) < \sum_{i = 1}^n \frac{1}{i} \]

​ 故有:

\[x_n < \sum_{i = 1}^n \frac{1}{i} - \sum_{i = 2}^{n + 1} \frac{1}{i} = 1 - \frac{1}{n + 1} < 1 \]

​ 又有:

\[x_{n + 1} - x_{n} = \sum_{i = 1}^{n + 1} \frac{1}{i} - \ln(n + 2) - \sum_{i = 1}^n \frac{1}{i} + \ln(n + 1) = \frac{1}{n + 1} - \ln\left(1 + \frac{1}{n + 1}\right) > 0 \]

​ 故 \(\{x_n\}\) 单调递增且有上界,即 \(\{x_n\}\) 收敛,不妨记 \(\gamma = \lim_{n \rightarrow \infty}x_n\),引理得证。

​ 则有:

\[\epsilon_{n} = \sum_{i = 1}^n \frac{1}{i} - \ln n - \gamma = x_n - \gamma + \ln\left(1 + \frac{1}{n}\right) \]

​ 由 \(\mathbf{Problem\ 6}\) 得:

\[x_n - \gamma + \frac{1}{n + 1} < \epsilon_{n} < x_n - \gamma + \frac{1}{n} \]

​ 由 \(\mathbf{Lemma}\)​ 得:

\[\lim_{n \rightarrow \infty}\left(x_n - \gamma + \frac{1}{n + 1}\right) = \lim_{n \rightarrow \infty}\left(\frac{1}{n + 1}\right) = 0 \\ \lim_{n \rightarrow \infty}\left(x_n - \gamma + \frac{1}{n}\right) = \lim_{n \rightarrow \infty}\left(\frac{1}{n}\right) = 0 \\ \]

​ 则由夹逼定理得:

\[\lim_{n \rightarrow \infty} \epsilon_{n} = 0 \]

1.7 节

\(\mathbf{Problem\ 1}\) 证明:\(\{a_n\}\) 是基本列。

​ 由题得:对任意 \(\epsilon > 0\),存在 \(N \in \mathbb{N^*}\),使得任意 \(n, m > N\) 有:

\[|a_n - a_N | < \frac{\epsilon}{2}, \quad |a_m - a_N | < \frac{\epsilon}{2} \]

​ 从而有:

\[|a_n - a_m| = |a_n - a_N - (a_m - a_N)| \le |a_n - a_N| + |a_m - a_N| < \epsilon \]

\(\mathbf{Problem\ 2}\)

(1)证明:\(\{a_n\}\) 不是基本列。

​ 考虑令:

\[a_n = \sum_{i = 1}^n \frac{1}{i} \]

​ 则有:

\[|a_{n + p} - a_n| = \sum_{i = n + 1}^{n + p} \frac{1}{i} < \sum_{i = n + 1}^{n + p} \frac{1}{n} = \frac{p}{n} \]

​ 故此时 \(\{a_n\}\) 符合题设,然而由例题 1.5.2 可知 \(\{a_n\}\) 发散,故 \(\{a_n\}\) 不是基本列。

(2)证明:\(\{a_n\}\) 是基本列。

​ 由题可知:

\[|a_{n + 1} - a_n| \le \frac{1}{n^2} < \frac{1}{n(n - 1)} = \frac{1}{n - 1} - \frac{1}{n} \]

​ 故有:

\[\begin{align*} |a_{n + p} - a_n| = \left|\sum_{i = n}^{n + p - 1} (a_{i + 1} - a_i)\right| \le \sum_{i = n}^{n + p - 1} |a_{i + 1} - a_i| < \sum_{i = n}^{n + p - 1} \left(\frac{1}{i - 1} - \frac{1}{i}\right)\\ = \frac{1}{n - 1} - \frac{1}{n + p - 1} < \frac{1}{n - 1}\\ \end{align*} \]

​ 则对于任意 \(\epsilon > 0\),取 \(N = \left[\frac{1}{\epsilon}\right] + 2\),则对于 \(n > N\),有:

\[|a_{n + p} - a_n| < \frac{1}{N - 1} < \epsilon \]

\(\mathbf{Problem\ 3}\) 证明:

(1)由题可知:

\[\begin{align*} |a_{n + p} - a_n| = \left|\sum_{i = n + 1}^{n + p} (-1)^{i - 1}\frac{1}{i^2}\right| \le \sum_{i = n + 1}^{n + p} \left|(-1)^{i - 1}\frac{1}{i^2}\right| < \sum_{i = n + 1}^{n + p} \frac{1}{(i - 1)i}\\ = \sum_{i = n + 1}^{n + p} \left(\frac{1}{i - 1} - \frac{1}{i}\right) = \frac{1}{n} - \frac{1}{n + p} < \frac{1}{n}\\ \end{align*} \]

​ 故对于任意 \(\epsilon > 0\),取 \(N = \left[\frac{1}{\epsilon}\right] + 1\),则对 \(n > N\) 有:

\[|a_{n + p} - a_n| < \frac{1}{N} < \epsilon \]

(3)由题可知:

\[\begin{align*} |a_{n + p} - a_n| = \left|\sum_{i = n + 1}^{n + p} \frac{\sin ix}{i^2}\right| \le \sum_{i = n + 1}^{n + p} \left|\frac{\sin ix}{i^2}\right| < \sum_{i = n + 1}^{n + p} \frac{1}{i^2} < \sum_{i = n + 1}^{n + p} \frac{1}{i(i - 1)}\\ = \sum_{i = n + 1}^{n + p} \left(\frac{1}{i - 1} - \frac{1}{i}\right) = \frac{1}{n} - \frac{1}{n + p} < \frac{1}{n}\\ \end{align*} \]

​ 故对于任意 \(\epsilon > 0\),取 \(N = \left[\frac{1}{\epsilon}\right] + 1\),则对 \(n > N\) 有:

\[|a_{n + p} - a_n| < \frac{1}{N} < \epsilon \]

\(\mathbf{Problem\ 4}\) 证明:

​ 令:

\[x_n = \sum_{i = 1}^{n - 1} \left|a_{i + 1} - a_i\right| \]

​ 则由 \(x_{n + 1} - x_n = |a_{n + 1} - a_n| \ge 0\)\(\{x_n\}\) 单调不下降,又有 \(\{x_n\}\) 有界,故 \(\{x_n\}\)​ 收敛。

​ 不妨令 \(\gamma = \lim_{n \rightarrow \infty} x_n\),则有 \(\gamma \ge x_n\),注意到:

\[x_{n + p} - x_n = \sum_{i = n}^{n + p - 1} |a_{i + 1} - a_i| \ge \left|\sum_{i = n}^{n + p - 1} (a_{i + 1} - a_i)\right| = |a_{n + p} - a_n| \]

​ 则对于任意 \(\epsilon > 0\),存在 \(N \in \mathbb{N^*}\),使得对 \(n > N\),有 \(|\gamma - x_n| = \gamma - x_n < \epsilon\),又有 \(\gamma \ge x_{n + p}\)

​ 则:

\[|a_{n + p} - a_n| \le \gamma - x_n < \gamma - (\gamma - \epsilon) = \epsilon \]

​ 对任意 \(n > N\) 都成立。

\(\mathbf{Problem\ 6}\) 证明:

​ 由 \(a_n \in [a, b]\) 可知 \(\{a_n\}\) 必有一收敛子列,假设该子列收敛于 \(\gamma\),又有 \(\{a_n\}\) 发散,故必存在 \(\epsilon > 0\) 使得对无限多 \(n\)\(|\gamma - a_n| \ge \epsilon\),考虑取出这些满足 \(|\gamma - a_n| \ge \epsilon\)\(a_n\) 组成 \(\{a_n\}\) 的一子列 \(\{a_{k_n}\}\)

​ 又由 \(a_{k_n} \in [a, b]\),可得存在 \(\{a_{k_n}\}\) 的一收敛子列,设该子列为 \(\{a_{l_n}\}\),则由 \(\{a_{k_n}\}\) 定义可知存在 \(\epsilon > 0\) 使得对任意 \(n\)\(|\gamma - a_{l_n}| \ge \epsilon\),故 \(\{a_{l_n}\}\) 不收敛于 \(\gamma\)

1.8 节

\(\mathbf{Problem\ 1}\) 解:\(E\) 为题中所给集合。

​ (1)\(\sup E = 12,\ \inf E = -1\)

​ (2)\(\sup E = 1,\ \inf E = 0\)

​ (3)\(\sup E = +\infty,\ \inf E = 1\)

​ (4)\(\sup E = 1,\ \inf E = 0\)

​ (5)\(\sup E = 3,\ \inf E = -1\)

​ (6)\(\sup E = e,\ \inf E = \frac{1}{e}\)

\(\mathbf{Problem\ 2}\) 解:

​ 令:

\[a_n = \left(1 + \frac{1}{n}\right)^n,\qquad b_n = \left(1 + \frac{1}{n}\right)^{n + 1} \]

​ 则由平均值不等式易得:

\[\begin{align*} a_n = \left(1 + \frac{1}{n}\right)^n < \left(\frac{1 + n(1 + 1/n)}{n + 1}\right)^{n + 1} = \left(1 + \frac{1}{n + 1}\right)^{n + 1} = a_{n + 1}\\ b_n = \left(1 + \frac{1}{n}\right)^{n + 1} > \left(\frac{n + 2}{1 + (n + 1) \cdot n/(n + 1)}\right)^{n + 2} = \left(1 + \frac{1}{n + 1}\right)^{n + 2} = b_{n + 1}\\ \end{align*} \]

​ 因而 \(2 = a_1 \le a_n < \lim_{n \rightarrow \infty} a_n = e\)\(4 = b_1 \ge b_n > \lim_{n \rightarrow \infty} b_n = e\)

​ 故 \(\sup \{a_n\} = e\)\(\inf \{a_n\} = 2\)\(\sup \{b_n\} = 4\)\(\inf \{b_n\} = e\)

\(\mathbf{Problem\ 3}\) 解:

​ 令 \(a_n = n^\frac{1}{n}\),注意到:

\[\frac{a_{n + 1}}{a_n} = \frac{(n + 1)^\frac{1}{n + 1}}{n^\frac{1}{n}} = \left(\frac{(n + 1)^n}{n^{n + 1}}\right)^\frac{1}{n(n + 1)} = \left(\frac{1}{n}\left(1 + \frac{1}{n}\right)^n\right)^\frac{1}{n(n + 1)} < \left(\frac{e}{n}\right)^\frac{1}{n(n + 1)} \]

​ 故对于任意 \(n \ge 3\) 有:

\[\frac{(n + 1)^\frac{1}{n + 1}}{n^\frac{1}{n}} < \left(\frac{e}{n}\right)^\frac{1}{n(n + 1)} < 1 \]

​ 又有 \(a_1 = 1\)\(a_2 = \sqrt{2}\)\(a_3 = \sqrt[3]{3}\),则 \(a_3 > a_2 > a_1\),因而 \(\sup \{a_n\} = \sqrt[3]{3}\)

​ 又有 \(n^\frac{1}{n} \ge 1\)\(a_1 = 1\),则 \(\inf\{a_n\} = 1\)

\(\mathbf{Problem\ 4}\) 证明:假设 \(\{a_n\}\) 收敛,令 \(A = \lim_{n \rightarrow \infty} a_n\)

​ 因而 \(\{a_n\}\) 有界,令 \(U = \sup\{a_n\}\)\(L = \inf\{a_n\}\)

​ 由于 \(\{a_n\}\) 无最大最小值,因而对任意 \(n\) 必有 \(m > n\)\(l > n\) 使得 \(a_m > a_n\)\(a_l < a_n\)

​ 对任意的 \(\epsilon > 0\),存在 \(N\) 使得 \(a_N + \epsilon > U\),又可知存在 \(\{a_n\}\) 的一单调递增子序列 \(\{a_{k_n}\}\) 使得 \(k_1 = N\),因而对任意 \(n\)\(|a_{k_n} - U| = U - a_{k_n} < U - a_N < \epsilon\),故而 \(\lim_{n \rightarrow \infty} a_{k_n} = U\),则 \(A = U\)

​ 同理 \(A = L\),则对任意 \(n\)\(A = L < a_n < U = A\),此时 \(a_n\) 不存在,因而 \(\{a_n\}\) 收敛。

1.10 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)\(a_{2n} = 1 + \frac{1}{n}\)\(a_{2n - 1} = -\frac{1}{n}\),则:

\[\lim_{n \rightarrow \infty} a_{2n} = 1,\qquad \lim_{n \rightarrow \infty} a_{2n - 1} = 0 \]

\(\mathbf{Lemma\ 1.}\) 现证明 \(E = \{0, 1\}\)

​ 对任意数列 \(\{a_n\}\),取其的 \(M\) 个收敛子列 \(\{a_{b_{1n}}\}, \{a_{b_{2n}}\}, \cdots, \{a_{b_{Mn}}\}\),使得 \(\mathbb{N^*} = \cup_{i = 1}^M \{b_{in}\}\)。记 \(\gamma_i = \lim_{n \rightarrow \infty} a_{b_{in}}\)

​ 取任意实数 \(k \notin \{\gamma_i\}\),令 \(\delta = \frac{1}{2} \min_{i = 1}^M\{|k - \gamma_i|\}\)。易知 \(\delta > 0\),则一定存在 \(N_0 \in \mathbb{N^*}\),使得任意 \(b_{in} > N_0\),都有 \(|a_{b_{in}} - \gamma_i| < \delta\)\(i = 1, 2, 3, \cdots, M\))。

​ 现任取 \(\{a_n\}\) 一收敛子列 \(\{a_{l_n}\}\),则存在 \(\epsilon = \delta\),对于任意的 \(N \in \mathbb{N^*}\),一定存在 \(l_p > \max\{N, N_0\}\),且一定有一数 \(h \in \{1, 2, 3, \cdots, M\}\) 使得 \(l_p \in \{b_{hn}\}\),则有:

\[|a_{l_p} - k| = |a_{l_p} - \gamma_h + \gamma_h - k| \ge |k - \gamma_h| - |a_{l_p} - \gamma_h| > \frac{1}{2} |k - \gamma_h| = \epsilon \]

​ 由 \({l_n}\) 的任意性可知不存在 \(\{a_n\}\) 的任意收敛子列使得其收敛到 \(k\)。由 \(\{2n\} \cup \{2n - 1\} = \mathbb{N^*}\),可知 \(E = \{0, 1\}\),证毕。

​ 因而 \({\lim \inf}_{n \rightarrow \infty} a_n = 0, {\lim \sup}_{n \rightarrow \infty} a_n = 1\)

​ (3)\(a_{2n} = \arctan 2n\)\(a_{2n - 1} = \arctan \frac{1}{2n - 1}\),则:

\[\lim_{n \rightarrow \infty} a_{2n} = \frac{\pi}{2},\qquad \lim_{n \rightarrow \infty} a_{2n - 1} = 0 \]

​ 则 \(E = \{0, \frac{\pi}{2}\}\),因而 \({\lim \inf}_{n \rightarrow \infty} a_n = 0, {\lim \sup}_{n \rightarrow \infty} a_n = \frac{\pi}{2}\)

​ (5)\(a_{4n} = 1\)\(a_{4n - 2} = 1\)\(a_{4n - 1} = 1 + (4n - 1)\sin\left(2\pi n - \frac{\pi}{2}\right) = 2 - 4n\)\(a_{4n - 3} = 1 + (4n - 3)\sin\left(2\pi n - \frac{3 \pi}{2}\right) = 4n - 2\),则:

\[\lim_{n \rightarrow \infty} a_{4n} = \lim_{n \rightarrow \infty} a_{4n - 2} = 1\\ \lim_{n \rightarrow \infty} a_{4n - 1} = -\infty,\qquad \lim_{n \rightarrow \infty} a_{4n - 3} = +\infty \]

​ 现拓展 \(\mathbf{Lemma\ 1.}\) 的条件:对任意数列 \(\{a_n\}\),取其的 \(M\) 个收敛子列 \(\{a_{b_{1n}}\}, \{a_{b_{2n}}\}, \cdots, \{a_{b_{Mn}}\}\)\(M'\) 个无穷大子列 \(\{a_{b_{(M + 1)n}}\}, \{a_{b_{(M + 2)n}}\}, \cdots, \{a_{b_{(M + M')n}}\}\),使得 \(\mathbb{N^*} = \cup_{i = 1}^{M + M'} \{b_{in}\}\)。记 \(\gamma_i = \lim_{n \rightarrow \infty} a_{b_{in}}\)\(i = 1, 2, 3, \cdots, M\))。

​ 取任意实数 \(k \notin \{\gamma_i\}\),以相同方式构造 \(\delta, N_0\)。现任取 \(\{a_n\}\) 一收敛子列 \(\{a_{l_n}\}\),由其收敛性可知:

\[T = \{l_n\} \cap \left(\bigcup_{i = M + 1}^{M + M'} \{b_{in}\}\right) \]

​ 为有限集,则存在 \(\epsilon = \delta\),对于任意的 \(N \in \mathbb{N^*}\),一定存在 \(l_p > \max\{N, N_0, \max T\}\),且一定有一数 \(h \in \{1, 2, 3, \cdots, M\}\) 使得 \(l_p \in \{b_{hn}\}\),则有:

\[|a_{l_p} - k| = |a_{l_p} - \gamma_h + \gamma_h - k| \ge |k - \gamma_h| - |a_{l_p} - \gamma_h| > \frac{1}{2} |k - \gamma_h| = \epsilon \]

​ 由 \({l_n}\) 的任意性可知不存在 \(\{a_n\}\) 的任意收敛子列使得其收敛到 \(k\),证毕。

​ 因此 \(E = \{1\}\),故 \({\lim \inf}_{n \rightarrow \infty} a_n = 1, {\lim \sup}_{n \rightarrow \infty} a_n = 1\)

​ (7)\(a_{2n} = 0\)

\[a_{2n - 1} = \left(\prod_{i = 1}^{2n - 1}\frac{1}{i}\right)^\frac{1}{2n - 1} > \frac{2n - 1}{\sum_{i = 1}^{2n - 1} i} = \frac{1}{n} \]

​ 则 \(\lim_{n \rightarrow \infty} a_{2n - 1} \ge 0\),又有:

\[\lim_{n \rightarrow \infty} a_{2n - 1} = \lim_{n \rightarrow \infty} \left(\prod_{i = 1}^{2n - 1}\frac{1}{i}\right)^\frac{1}{2n - 1} \le \lim_{n \rightarrow \infty} \frac{\sum_{i = 1}^{2n - 1} \frac{1}{i}}{2n - 1} = \lim_{n \rightarrow \infty} \frac{1}{n} = 0 \]

​ 则 \(\lim_{n \rightarrow \infty} a_{2n - 1} = 0\)。所以 \({\lim \inf}_{n \rightarrow \infty} a_n = {\lim \sup}_{n \rightarrow \infty} a_n = 0\)

\(\mathbf{Problem\ 2}\) 证明:

​ (1)由 \({\lim \inf}_{n \rightarrow \infty} b_n = {\lim \sup}_{n \rightarrow \infty} b_n = b\) 得:

\[\begin{align*} {\lim \inf}_{n \rightarrow \infty} (a_n + b_n) & \le {\lim \inf}_{n \rightarrow \infty} a_n + {\lim \sup}_{n \rightarrow \infty} b_n = {\lim \inf}_{n \rightarrow \infty} a_n + b\\ {\lim \inf}_{n \rightarrow \infty} (a_n + b_n) & \ge {\lim \inf}_{n \rightarrow \infty} a_n + {\lim \inf}_{n \rightarrow \infty} b_n = {\lim \inf}_{n \rightarrow \infty} a_n + b\\ {\lim \sup}_{n \rightarrow \infty} (a_n + b_n) & \le {\lim \sup}_{n \rightarrow \infty} a_n + {\lim \sup}_{n \rightarrow \infty} b_n = {\lim \sup}_{n \rightarrow \infty} a_n + b\\ {\lim \sup}_{n \rightarrow \infty} (a_n + b_n) & \ge {\lim \sup}_{n \rightarrow \infty} a_n + {\lim \inf}_{n \rightarrow \infty} b_n = {\lim \sup}_{n \rightarrow \infty} a_n + b\\ \end{align*} \]

​ 则:

\[\begin{align*} {\lim \inf}_{n \rightarrow \infty} (a_n + b_n) & = {\lim \inf}_{n \rightarrow \infty} a_n + b\\ {\lim \sup}_{n \rightarrow \infty} (a_n + b_n) & = {\lim \sup}_{n \rightarrow \infty} a_n + b\\ \end{align*} \]

​ (3)由 \(\{a_n\}\)\(\{b_n\}\) 的非负性,可得:

\[\inf_{n \ge k} a_n \cdot \inf_{n \ge k} b_n \le a_p b_p\\ \sup_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \ge a_p b_p\\ \]

​ 其中 \(p = k, k + 1, k + 2, \cdots\),令 \(p\) 取遍不小于 \(k\)​ 的整数,即得:

\[\inf_{n \ge k} a_n \cdot \inf_{n \ge k} b_n \le \inf_{n \ge k} (a_n b_n)\\ \sup_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \ge \sup_{n \ge k} (a_n b_n)\\ \]

\(\mathbf{Lemma\ 2.}\) 正实数列 \(\{x_n\}\) 满足:\(\sup \{\frac{1}{x_n}\} = \frac{1}{\inf \{x_n\}}\)。证明:

​ 令 \(X = \sup \{x_n\}\),则对任意 \(\epsilon > 0\) 有:

​ 1)对任意 \(n\)\(\frac{1}{x_n} \le X\)\(x_n \ge \frac{1}{X}\)

​ 2)对于 \(\delta = \frac{\epsilon X^2}{\epsilon X + 1} > 0\),存在 \(\frac{1}{x_n} + \delta > X\),即 \(x_n < \frac{\epsilon X + 1}{X} = \epsilon + \frac{1}{X}\)​。

​ 因此 \(\inf\{x_n\} = \frac{1}{X}\),证毕。

​ 同理可证:\(\inf \{\frac{1}{x_n}\} = \frac{1}{\sup \{x_n\}}\)

​ 因此当 \(k\) 满足 \(\inf_{n \ge k} b_n > 0\) 时,有:

\[\inf_{n \ge k} a_n = \inf_{n \ge k} \frac{a_n b_n}{b_n} \ge \inf_{n \ge k} (a_n b_n) \cdot \inf_{n \ge k} \frac{1}{b_n} = \inf_{n \ge k} (a_n b_n) \cdot \frac{1}{\sup_{n \ge k} b_n}\\ \]

​ 即:

\[\inf_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \ge \inf_{n \ge k} (a_n b_n) \]

​ 而当 \(k\) 满足 \(\inf_{n \ge k} b_n = 0\) 时,有:

\[\inf_{n \ge k} (a_n b_n) = 0 \le \inf_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \]

​ 综上,可得:

\[\inf_{n \ge k} a_n \cdot \inf_{n \ge k} b_n \le \inf_{n \ge k} (a_n b_n) \le \inf_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \]

​ 同理可证:

\[\inf_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \le \sup_{n \ge k} (a_n b_n) \le \sup_{n \ge k} a_n \cdot \sup_{n \ge k} b_n \]

1.11 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)由于 \(\{\ln n\}\) 单调递增且当 \(n \rightarrow \infty\)\(\ln n \rightarrow \infty\),故:

\[\lim_{n \rightarrow \infty} \frac{\sum_{i = 1}^n \frac{1}{i}}{\ln n} = \lim_{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln \left(1 + \frac{1}{n - 1}\right)} \]

​ 又有:

\[1 - \frac{1}{n} = \frac{\frac{1}{n}}{\frac{1}{n - 1}} < \frac{\frac{1}{n}}{\ln \left(1 + \frac{1}{n - 1}\right)} < \frac{\frac{1}{n}}{\frac{1}{n}} = 1 \]

​ 则:

\[\lim_{n \rightarrow \infty} \frac{\sum_{i = 1}^n \frac{1}{i}}{\ln n} = \lim_{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln \left(1 + \frac{1}{n - 1}\right)} = 1 \]

​ (3)由于 \(\{\sqrt{n}\}\) 单调递增且当 \(n \rightarrow \infty\)\(\sqrt{n} \rightarrow \infty\),故:

\[\lim_{n \rightarrow \infty} \frac{\sum_{i = 1}^n \frac{1}{\sqrt i}}{\sqrt n} = \lim_{n \rightarrow \infty} \frac{\frac{1}{\sqrt n}}{\sqrt n - \sqrt{n - 1}} = \lim_{n \rightarrow \infty} \frac{\sqrt n + \sqrt{n - 1}}{\sqrt n} = \lim_{n \rightarrow \infty} \left(1 + \sqrt{1 - \frac{1}{n}}\right) = 2 \]

\(\mathbf{Problem\ 3}\) 解:

\[\lim_{n \rightarrow \infty} \frac{\sum_{i = 1}^n (2i - 1)^2}{n^3} = \lim_{n \rightarrow \infty} \frac{(2n - 1)^2}{n^3 - (n - 1)^3} = \lim_{n \rightarrow \infty} \frac{4n^2 - 4n + 1}{3n^2 - 3n + 1} = \lim_{n \rightarrow \infty} \frac{4 - \frac{4}{n} + \frac{1}{n^2}}{3 - \frac{3}{n} + \frac{1}{n^2}} = \frac{4 + 0 + 0}{3 + 0 + 0} = \frac{4}{3} \]

\(\mathbf{Problem\ 6}\) 证明:

​ 对于任意的 \(\epsilon > 0\),存在 \(N \in \mathbb{N^*}\),使得 \(n > N\)\(|\frac{a_n - a_{n - 1}}{b_n - b_{n - 1}} - A| < \epsilon\),即:

\[A - \epsilon < \frac{a_n - a_{n - 1}}{b_n - b_{n - 1}} < A + \epsilon \]

​ 由 \(\{b_n\}\) 单调递减可得:

\[(A + \epsilon)(b_n - b_{n - 1}) < a_n - a_{n - 1} < (A - \epsilon)(b_n - b_{n - 1}) \]

​ 取 \(M > N\),则有:

\[(A + \epsilon)\sum_{i = N + 1}^M (b_i - b_{i - 1}) < \sum_{i = N + 1}^M a_i - a_{i - 1} < (A - \epsilon)\sum_{i = N + 1}^M (b_i - b_{i - 1}) \]

​ 也即:

\[(A + \epsilon)(b_M - b_N) < a_M - a_N < (A - \epsilon)(b_M - b_N) \]

​ 则有:

\[A - \epsilon < \frac{a_M - a_N}{b_M - b_N} < A + \epsilon \]

​ 整理得:

\[(A - \epsilon)(1 - \frac{b_M}{b_N}) + \frac{a_M}{b_N} < \frac{a_N}{b_N} < (A + \epsilon)(1 - \frac{b_M}{b_N}) + \frac{a_M}{b_N} \]

​ 故有:

\[{\lim \sup}_{M \rightarrow \infty} \frac{a_N}{b_N} \le (A + \epsilon)(1 - \frac{1}{b_N} {\lim \sup}_{M \rightarrow \infty} b_M) + \frac{1}{b_N} {\lim \sup}_{M \rightarrow \infty} a_M = A + \epsilon\\ {\lim \inf}_{M \rightarrow \infty} \frac{a_N}{b_N} \ge (A - \epsilon)(1 - \frac{1}{b_N} {\lim \inf}_{M \rightarrow \infty} b_M) + \frac{1}{b_N} {\lim \inf}_{M \rightarrow \infty} a_M = A - \epsilon\\ \]

​ 因此 \(A - \epsilon \le {\lim \inf}_{M \rightarrow \infty} \frac{a_N}{b_N} \le {\lim \sup}_{M \rightarrow \infty} \frac{a_N}{b_N} \le A + \epsilon\),现令 \(N \rightarrow \infty\),则 \(\epsilon \rightarrow 0\),因此有:

\[\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = A \]

2.2 节

\(\mathbf{Problem\ 1}\) 证明:令 \(U_p = \{(p, y) | y \in \mathbb{Q}\}\),则有:

\[\bigcup_{p \in \mathbb{Q}} U_p = \mathbb{Q}^2 \]

​ 又知 \(\mathbb{Q}\) 为可数集,则存在双射 \(f : \mathbb{N^*} \rightarrow \mathbb{Q}\),则令 \(E_k = U_{f(k)}\),有:

\[\bigcup_{k = 1}^{\infty} E_k = \bigcup_{k = 1}^{\infty} U_{f(k)} = \bigcup_{p \in \mathbb{Q}} U_p = \mathbb{Q}^2 \]

​ 又因为对映射 \(g_p : U_p \rightarrow \mathbb{Q}, (p, y) \mapsto y\),存在映射 \(h_p : \mathbb{Q} \rightarrow U_p, y \mapsto (p, y)\),使得:

\[g_p \circ h_p = I,\qquad h_p \circ g_p = I \]

​ 故 \(g_p\) 为双射,则 \(U_p\) 为可数集,因而 \(E_n\) 为可数集,继而可知 \(\mathbb{Q}^2\) 为可数集。

\(\mathbf{Problem\ 2}\) 证明:记 \(X_n\) 为全体使得存在一组整数 \((a_0, a_1, \cdots, a_n), a_0 \ne 0\) 满足:

\[a_0 x^n + a_1 x^{n - 1} + \cdots + a_{n - 1} x + a_n = 0 \]

​ 的 \(x\) 所构成的集合。由于上述多项式的根有 \(n\) 个,则可以对这些根标号,记 \(f_i(a_0, a_1, \cdots, a_n)\) 表示上述多项式的第 \(i\) 个根,故有:

\[X_n = \{f_i(a_0, a_1, \cdots, a_n) | (a_0, a_1, \cdots, a_n) \in \mathbb{Z}^n, i = 1, 2, \cdots, n\} \]

\(\mathbf{Lemma\ 1.}\)\(\mathbb{A}\) 可数,则对 \(n \in \mathbb{N^*}\)\(\mathbb{A}^n\) 也可数。证明:

​ 当 \(n = 1\) 时显然成立。

​ 若 \(n = k\ (k \ge 1)\) 时引理成立,则当 \(n = k + 1\) 时:对于 \(\alpha \in \mathbb{A}^n\),令:

\[\mathbb{B}_\alpha = \{(x, \alpha) | x \in \mathbb{A}^k\} \]

​ 则存在双射 \(f : \mathbb{N^*} \rightarrow \mathbb{A}\),故令 \(E_k = \mathbb{B}_{f(k)}\),就有:

\[\bigcup_{k = 1}^\infty E_k = \bigcup_{\alpha \in \mathbb{A}} \mathbb{B}_\alpha = \mathbb{A}^{k + 1} \]

​ 又因为对映射 \(g_\alpha : \mathbb{B}_\alpha \rightarrow \mathbb{A}^k, (x, \alpha) \mapsto x\),存在映射 \(h_\alpha : \mathbb{A}^k \rightarrow \mathbb{B}_\alpha, x \mapsto (x, \alpha)\),使得:

\[g_\alpha \circ h_\alpha = I,\qquad h_\alpha \circ g_\alpha = I \]

​ 故 \(\mathbb{B}_\alpha\) 为可数集,则 \(E_n\) 为可数集,故 \(\mathbb{A}^{k + 1} = \mathbb{A}^n\)​ 可数。证毕。

\(\mathbf{Lemma\ 2.}\) 对任意可数集 \(\mathbb{A}\) 和定义在 \(\mathbb{A}\) 上的映射 \(f : \mathbb{A} \rightarrow V\)\(\mathrm{Im}(f)\) 至多可数。证明:

​ 定义 \(\mathbb{A}\) 上的关系 \(a \sim b : f(a) = f(b)\),显然 \(\sim\) 为等价关系,其将 \(\mathbb{A}\) 分成等价类 \(\{T_1, T_2, T_3, \cdots\}\)。则从 \(T_i\) 中取出任一元素 \(\beta_i\),组成一个 \(\mathbb{A}\) 的子集 \(U = \{\beta_1, \beta_2, \beta_3, \cdots\}\),构造映射 \(g : U \rightarrow \mathrm{Im}(f), x \mapsto f(x)\),则有 \(\mathrm{Im}(g) = \mathrm{Im}(f)\),故 \(g\) 为满射。

​ 又因为对 \(u, v \in U\)\(g(u) = g(v)\) 当且仅当 \(\exists k\) 使得 \(u, v \in T_k\),即 \(u = v = \beta_k\),因而 \(g\) 为单射,籍由此可知 \(g\) 为双射,故 \(U\)\(\mathrm{Im}(f)\) 等势。

​ 又有 \(U \subset \mathbb{A}\),故 \(U\) 至多可数,即 \(\mathrm{Im}(f)\) 至多可数。证毕。

​ 现令 \(X_{nm} = \{f_m(a_0, a_1, \cdots, a_n) | (a_0, a_1, \cdots, a_n) \in \mathbb{Z}^n\}\),由 \(\mathbf{Lemma\ 1.}\)\(\mathbb{Z}^n\) 为可数集,再由 \(\mathbf{Lemma\ 2.}\)\(X_{nm}\) 为至多可数集,又有:

\[\bigcup_{m = 1}^n X_{nm} = X_n \]

​ 故 \(X_n\) 至多可数,则全体代数数集合 \(X = \cup_{n = 1}^\infty X_n\) 为至多可数集。

​ 又有对任意整数 \(n\),令 \(a_0 = 1, a_1 = -n\),则 \(a_0 n + a_1 = 0\),故 \(n \in X\)。因此 \(X\) 是无穷集,故 \(X\) 可数。

\(\mathbf{Problem\ 3.}\) 证明:对任意非空区间 \((a, b)\),取正整数 \(q > \frac{1}{b - a}\),则 \(qb - qa = q(b - a) > 1\),即必然存在整数 \(p \in (qa, qb)\),即 \(\frac{p}{q} \in (a, b)\)​,因此任意非空区间中必有有理数。

​ 因而对任意 \(R = (a, b) \in A\),取有理数 \(q_R \in R\),构造映射 \(f : A \rightarrow \mathbb{Q}, R \mapsto q_R\)。又因为对任意 \(R_1, R_2 \in A\)\(R_1 \cap R_2 = \varnothing\),则 \(f\) 为单射。因而映射 \(g : A \rightarrow \mathrm{Im}(f), R \mapsto q_R\) 为双射。

​ 故 \(A\)\(\mathrm{Im}(f)\) 等势,又因为 \(\mathrm{Im}(f) \subset \mathbb{Q}\),所以 \(A\) 至多可数。

2.4 节

\(\mathbf{Problem\ 3}\) 证明:

​ (1)\(\forall \epsilon > 0, \exists \delta > 0, \forall x\) 满足 \(0 < |x - x_0| < \delta\),有 \(|f(x) - A| < \epsilon\)

​ 故 \(||f(x)| - |A|| < |f(x) - A| < \epsilon\)

​ (3)\(\forall \epsilon > 0, \exists \delta > 0, \forall x\) 满足 \(0 < |x - x_0| < \delta\),有 \(|f(x) - A| < -2\epsilon^2 + 2\epsilon\sqrt{\epsilon^2 + A} = b\)​。

​ 故 \(|\sqrt{f(x)} - \sqrt{A}| = \frac{|f(x) - A|}{\sqrt{f(x)} + \sqrt{A}} < \frac{b}{\sqrt{A - b} + \sqrt{A}} < \frac{b}{2\sqrt{A - b}} = \frac{1}{2}\frac{-2\epsilon^2 + 2\epsilon\sqrt{\epsilon^2 + A}}{A + 2\epsilon^2 - 2\epsilon\sqrt{\epsilon^2 + A}} = \frac{1}{2}\frac{-2\epsilon^2 + 2\epsilon\sqrt{\epsilon^2 + A}}{\sqrt{\epsilon^2 + A} - \epsilon} = \epsilon\)

\(\mathbf{Problem\ 4}\) 证明:

​ (1)\(\forall \epsilon > 0, \delta = \min\{1, \frac{\epsilon}{19}\}, \forall x\) 满足 \(0 < |x - 2| < \delta\),有:

\[|x^3 - 8| \le \delta \cdot (\delta^2 + 6\delta + 12) < 19\delta < \epsilon \]

​ (3)\(\forall \epsilon > 0, \delta = \min\{1, \frac{\epsilon}{11}\}, \forall x\) 满足 \(0 < |x - 1| < \delta\),有:

\[\big|\frac{x^4 - 1}{x - 1} - 4\big| = |x^3 + x^2 + x - 3| \le \delta \cdot (\delta^2 + 4\delta + 6) < 11\delta < \epsilon \]

​ (5)\(\forall \epsilon > 0, \delta = \frac{2\epsilon^2}{1 - \epsilon^2}, \forall x \in (1, 1 + \delta)\),有:

\[\big|\frac{x - 1}{\sqrt{x^2 - 1}} - 0\big| = \sqrt{1 - \frac{2}{x + 1}} < \sqrt{\frac{\delta}{\delta + 2}} = \sqrt{\frac{1}{1 + \frac{2}{\delta}}} = \epsilon \]

\(\mathbf{Problem\ 5}\) 解:

​ (1)易知:

\[\lim_{x \rightarrow 2^+} x^2 = (\lim_{x \rightarrow 2^+} x)^2 = 4\\ \lim_{x \rightarrow 2^-} -ax = -a \lim_{x \rightarrow 2^-} x = -2a\\ \]

​ (2)则 \(4 = -2a\)\(a = -2\)

\(\mathbf{Problem\ 6}\) 证明:令 \(A = \lim_{x \rightarrow x_0} f(x)\),则 \(A > a\)

\(\forall \epsilon > 0, \exists \delta > 0, \forall x\) 满足 \(0 < |x - x_0| < \delta\),有:\(|f(x) - A| < \epsilon\),则此时 \(f(x) > A - \epsilon\)

​ 现取 \(\epsilon = A - a\),则 \(\exists \delta > 0, \forall x\) 满足 \(0 < |x - x_0| < \delta\),有:\(f(x) > A - \epsilon = a\)

\(\mathbf{Problem\ 7}\) 证明:令 \(A = \lim_{x \rightarrow x_0^-} f(x), B = \lim_{x \rightarrow x_0^+} f(x)\),则 \(A < B\)

\(\forall \epsilon > 0, \exists \delta > 0, \forall x \in (x_0 - \delta, x_0)\)\(|f(x) - A| < \epsilon\)\(\forall y \in (x_0, x_0 + \delta)\)\(|f(y) - B| < \epsilon\)。故此时 \(\forall x \in (x_0 - \delta, x_0), f(x) < A + \epsilon\)\(\forall y \in (x_0, x_0 + \delta), f(y) > B - \epsilon\)

​ 现取 \(\epsilon = \frac{B - A}{2}\),则 \(\exists \delta > 0, \forall x \in (x_0 - \delta, x_0), \forall y \in (x_0, x_0 + \delta), f(x) < A + \epsilon = \frac{A + B}{2} = B - \epsilon < f(y)\)

\(\mathbf{Problem\ 8}\) 证明:假设存在 \(n\) 使得对任意 \(m > n\)\(x_m < x_n\),则对任意 \(N\) 存在 \(m > n\) 使得 \(|x_m - x_0| = x_0 - x_m > x_0 - x_n\),与 \(x_n \rightarrow x_0\ (n \rightarrow \infty)\) 矛盾,故 \(\{x_n\}\) 必有一单调递增子列 \(\{x_{k_n}\}\),因此 \(\{f(x_n)\}\) 也必有一单调递增子列 \(\{f(x_{k_n}\})\)

​ 又因 \(\forall x < x_0, \exists n\) 使得 \(x_{k_n} > x\),而 \(f(x_{k_n}) < \lim_{n \rightarrow \infty} f(x_{k_n}) = A\),则 \(f(x) < f(x_{k_n}) < A\)​。

​ 故 \(\forall \epsilon > 0, \exists N, |f(x_N) - A| = A - f(x_N) < \epsilon\)。因此对于 \(\delta = x_0 - x_N\)\(\forall x \in (x_0 - \delta, x_0) = (x_N, x_0), |f(x) - A| = A - f(x) < A - f(x_N) < \epsilon\),即 \(f(x_0 -) = A\)

\(\mathbf{Problem\ 10}\) 解:令 \(r(A) = \max_{a \in A} a\)\(l(A) = \min_{a \in A} a\)​。

​ 则对于 \(x \notin \cup_{n \in \mathbb{N^*}}A_n\)\(A_n\) 要么 \(r(A_n) < x\) 要么 \(l(A_n) > x\),故令 \(r = \max_{n \in \mathbb{N^*}, r(A_n) < x} r(A_n)\)\(l = \min_{n \in \mathbb{N^*}, l(A_n) > x} l(A_n)\)\(\delta = \min\{x - r, l - x\}\),则有:\(\forall y\) 满足 \(|y - x| < \delta\),有 \(y \notin \cup_{n \in \mathbb{N^*}}A_n\),则 \(|f(y) - 0| = |f(y)| = 0\)

​ 对于 \(x \in A_n\),若 \(\forall \delta > 0, \exists y \in A_n, 0 < |y - x| < \delta\),则令 \(x_1 = x, \delta = 1\),可取得 \(x_2 \in A_n\)\(0 < |x_2 - x| < 1\);再令 \(\delta = |x_2 - x|\),可取得 \(x_3 \in A_n\)\(0 < |x_3 - x| < |x_2 - x|\),再令 \(\delta = |x_3 - x|\),依此类推……即可得到各项不同的无穷数列 \(\{x_n\} \subset A_n\),则 \(A_n\) 不是有限集,因此 \(\exists \delta > 0, \forall y\) 满足 \(0 < |y - x| < \delta\)\(y \notin A_n\),则此时 \(|f(y) - 0| = |f(y)| = 0\)

​ 综上,对任意 \(x_0 \in [0, 1]\)\(\lim_{x \rightarrow x_0} f(x) = 0\)

\(\mathbf{Problem\ 11}\) 解:

​ (1)

\[\begin{align*} \lim_{x \rightarrow 2} \frac{1 + x - x^3}{1 + x^2} & = \frac{\lim_{x \rightarrow 2} 1 + x - x^3}{\lim_{x \rightarrow 2}1 + x^2} = \frac{1 + 2 - 8}{1 + 4} = -1 \end{align*} \]

​ (3)

\[\begin{align*} \lim_{x \rightarrow 1} \frac{x^m - 1}{x - 1} & = \lim_{x \rightarrow 1} \sum_{i = 0}^{m - 1} x^i = \sum_{i = 0}^{m - 1} \lim_{x \rightarrow 1} x^i = m \end{align*} \]

​ (5)

\[\begin{align*} \lim_{x \rightarrow 0} \frac{\sqrt{1 + x} - 1}{x} = \lim_{x \rightarrow 0} \frac{(\sqrt{1 + x} - 1)(\sqrt{1 + x} + 1)}{x(\sqrt{1 + x} + 1)} = \lim_{x \rightarrow 0} \frac{1}{\sqrt{1 + x} + 1} = \frac{1}{1 + \lim_{x \rightarrow 0} \sqrt{1 + x}} = \frac{1}{2} \end{align*} \]

​ (7)

\[\begin{align*} \lim_{x \rightarrow 0} \frac{(1 + x)^\frac{1}{m} - 1}x = \lim_{x \rightarrow 0} \frac{\sum_{i = 1}^\infty \binom{\frac{1}{m}}i x^i}{x} = \lim_{x \rightarrow 0} \sum_{i = 0}^\infty \binom{\frac{1}{m}}{i + 1}x^i = \frac{1}{m} + \lim_{x \rightarrow 0} \sum_{i = 1}^\infty \binom{\frac{1}{m}}{i + 1}x^i = \frac1m \end{align*} \]

\(\mathbf{Problem\ 12}\) 解:

​ (1)

\[\lim_{x \rightarrow 0} \frac{\sin ax}{\sin bx} = \lim_{x \rightarrow 0} \frac{\sin ax / (abx)}{\sin bx / (abx)} = \lim_{x \rightarrow 0} \frac ab \frac{\sin ax / (ax)}{\sin bx / (bx)} = \frac ab \frac{\lim_{ax \rightarrow 0} \sin ax / (ax)}{\lim_{bx \rightarrow 0} \sin bx / (bx)} = \frac ab \]

​ (3)

\[\lim_{x \rightarrow 0} \sin x = 0\\ \lim_{x \rightarrow 0} \frac{\sin \sin x}x = \lim_{x \rightarrow 0} \frac{\sin x \cdot \sin \sin x}{x \sin x} = \lim_{x \rightarrow 0} \frac{\sin x}x \cdot \lim_{x \rightarrow 0} \frac{\sin \sin x}{\sin x} = \lim_{\sin x \rightarrow 0} \frac{\sin \sin x}{\sin x} = 1 \]

​ (5)

\[\lim_{x \rightarrow 0} \cos x = \sqrt{\lim_{x \rightarrow 0} \cos^2 x} = \sqrt{1 - \lim_{x \rightarrow 0} \sin^2 x} = 1\\ \lim_{h \rightarrow 0} \sin(x + h) = \lim_{h \rightarrow 0} (\sin x \cos h + \sin h \cos x) = \sin x \lim_{h \rightarrow 0} \cos h + \cos x \lim_{h \rightarrow 0} \sin h = \sin x \]

​ (7)注意到:

\[\sum_{i = 1}^n \left((1 - a_i)\prod_{j = 1}^{i - 1}a_j\right) = \sum_{i = 1}^n \left(\prod_{j = 1}^{i - 1}a_j - \prod_{j = 1}^{i}a_j\right) = 1 - \prod_{i = 1}^n a_i \]

​ 故有:

\[\lim_{x \rightarrow 0} \frac{1 - \prod_{i = 1}^n \cos ix}{x^2} = \sum_{i = 1}^n \left(\lim_{x \rightarrow 0} \frac{1 - \cos ix}{x^2}\prod_{j = 1}^{i - 1} \lim_{x \rightarrow 0} \cos jx\right) = \sum_{i = 1}^n i^2 \lim_{ix \rightarrow 0} \frac{1 - \cos ix}{(ix)^2} = \frac{1}{2} \sum_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{12} \]

\(\mathbf{Problem\ 13}\) 解:

​ (1)易知 \(\frac1x - 1 < \big[\frac1x\big] \le \frac 1x\),则:

\[1 - x < x \big[\frac 1x\big] \le 1,\qquad (x > 0)\\ 1 \le x \big[\frac 1x\big] < 1 - x,\qquad (x < 0)\\ \]

​ 又有 \(\lim_{x \rightarrow 0^+} 1 - x = 1\)\(\lim_{x \rightarrow 0^-} 1 - x = 1\),则:

\[\lim_{x \rightarrow 0^+} x \big[\frac 1x\big] = \lim_{x \rightarrow 0^-} x \big[\frac 1x\big] = 1 \]

​ 故 \(\lim_{x \rightarrow 0} x \big[\frac 1x\big] = 1\)

​ (3)\(\forall n \in \mathbb{Z}, \forall \epsilon > 0, \exists \delta = \frac{1}{2}, \forall x \in (n - \delta, n), |[x] - (n - 1)| = 0 < \epsilon\),故 \(\lim_{x \rightarrow n^-} [x] = n - 1\),则:

\[\lim_{x \rightarrow 2^-} \frac{[x]^2 + 4}{x^2 + 4} = \frac{(\lim_{x \rightarrow 2^-} [x])^2 + 4}{4 + 4} = \frac 58 \]

\(\mathbf{Problem\ 15}\) 解:\(g\) 的性质不满足定理 2.4.8 的条件:存在一个 \(t_0\) 处的邻域使得其中不存在 \(g(x) = \lim_{t \rightarrow t_0} g(t)\)

​ 而对 \(t_0\) 处的一个邻域,从中取出两个不同的有理数 \(p, q\),则无理数 \(p + \frac{\sqrt{2}}2 (q - p)\) 必然也在邻域内,这与定理 2.4.8 的条件冲突。

2.5 节

\(\mathbf{Problem\ 1}\) 证明:

​ (1)\(\forall \epsilon > 0, A = \max\{\frac{1}{9\epsilon}, 2\}, \forall x < -A = -\max\{\frac{1}{9\epsilon}, 2\}\) 有:

\[\big|\frac{x^2 + 1}{3x^2 - x + 1} - \frac 13\big| = \frac{|x + 2|}{3(3x^2 - x + 1)} < \frac{||x| - 2|}{9x^2} < \frac{1}{9|x|} < \epsilon \]

​ (3)\(\forall \epsilon > 0, A = \frac{a}{\epsilon}, \forall x > A = \frac{a}{\epsilon}\) 有:

\[|x - \sqrt{x^2 - a} - 0| = \frac{a}{x + \sqrt{x^2 - a}} < \frac{a}{x} < \epsilon \]

\(\mathbf{Problem\ 2}\) 解:

​ (1)

\[\begin{align*} \lim_{x \rightarrow \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b\right) = \lim_{x \rightarrow \infty} \left(\frac{(1 - a)x^2 - ax + 1}{x + 1}\right) - b & \overset{t = x + 1}= \lim_{t \rightarrow \infty} \left((1 - a)t + \frac{2}{t}\right) + a - 2 - b\\ & = \lim_{t \rightarrow \infty} (1 - a)t + a - b - 2 = 0 \end{align*} \]

​ 则 \(a = 1, b = -1\)

\(\mathbf{Problem\ 3}\) 证明:

\[\sin \sqrt{x + 1} - \sin \sqrt{x - 1} = 2\cos \frac{\sqrt{x + 1} + \sqrt{x - 1}}2 \sin \frac 1{\sqrt{x + 1} + \sqrt{x - 1}} \]

​ 所以:

\[0 \le |\sin \sqrt{x + 1} - \sin \sqrt{x - 1}| \le \big|2\cos \frac{\sqrt{x + 1} + \sqrt{x - 1}}2 \sin \frac 1{\sqrt{x + 1} + \sqrt{x - 1}}\big| \le 2\big|\sin \frac 1{\sqrt{x + 1} + \sqrt{x - 1}}\big| \]

​ 因此 \(\forall \epsilon > 0, A = \frac{1}{4\epsilon^2} + 1, \forall x > A\) 有:

\[\big|\frac 1{\sqrt{x + 1} + \sqrt{x - 1}} - 0\big| < \frac 1{\sqrt{A + 1} + \sqrt{A - 1}} < \frac 1{2\sqrt{x - 1}} < \epsilon \]

​ 故 \(\lim_{x \rightarrow +\infty} \frac 1{\sqrt{x + 1} + \sqrt{x - 1}} = 0\)。因此令 \(t = \frac 1{\sqrt{x + 1} + \sqrt{x - 1}}\) 可得:

\[\lim_{x \rightarrow +\infty} 2\big|\sin \frac 1{\sqrt{x + 1} + \sqrt{x - 1}}\big| = 2\lim_{t \rightarrow 0} \sin t = 0 \]

​ 则 \(\lim_{x \rightarrow +\infty} |\sin \sqrt{x + 1} - \sin \sqrt{x - 1}| = 0\),因而:

\[\lim_{x \rightarrow +\infty} \sin \sqrt{x + 1} - \sin \sqrt{x - 1} = 0 \]

\(\mathbf{Problem\ 5}\) 解:易知 \(\sin(x + n\pi) = (-1)^n \sin x\),则:

\[\lim_{n \rightarrow \infty} \big|\sin\left(\pi\sqrt{n^2 + 1}\right)\big| = \lim_{n \rightarrow \infty} \big|\sin\left(\pi(\sqrt{n^2 + 1} - n)\right)\big| = \lim_{n \rightarrow \infty} \big|\sin\left(\frac{\pi}{n + \sqrt{n^2 + 1}}\right)\big| \]

​ 令 \(t = \frac 1{n + \sqrt{n^2 + 1}}\),则 \(\lim_{n \rightarrow \infty} t = 0\),可知:

\[\lim_{n \rightarrow \infty} \big|\sin\left(\frac{\pi}{n + \sqrt{n^2 + 1}}\right)\big| = \lim_{t \rightarrow 0} \big|\sin (\pi t)\big| = 0 \]

​ 故:

\[\lim_{n \rightarrow \infty} \sin\left(\pi\sqrt{n^2 + 1}\right) = 0 \]

\(\mathbf{Problem\ 6}\) 解:

​ (1)

\[\begin{align*} \lim_{x \rightarrow \infty} \left(\frac{1 + x}{3 + x}\right)^x = \frac 1{\lim_{x \rightarrow \infty} \left(1 + \frac 2{x + 1}\right)^x} = \frac 1{\left(\lim_{x \rightarrow \infty} \left(1 + \frac 2{x + 1}\right)^{\frac{x + 1}2}\right)^2 \cdot \lim_{x \rightarrow \infty} \left(1 + \frac 2{x + 1}\right)^{-1}} = \frac 1{e^2} \end{align*} \]

​ (3)令 \(t = \frac 1x\),则 \(\lim_{x \rightarrow 0} t = \infty\),则有:

\[\lim_{x \rightarrow 0} (1 - 2x)^\frac 1x = \lim_{t \rightarrow \infty} \left(1 - \frac 2t\right)^t = \frac 1{\lim_{t \rightarrow \infty} \left(1 + \frac 2{t - 2}\right)^t} = \frac 1{\left(\lim_{t \rightarrow \infty} \left(1 + \frac 2{t - 2}\right)^{\frac{t - 2}2}\right)^2 \cdot \lim_{t \rightarrow \infty} \left(1 + \frac 2{t - 2}\right)^2} = \frac 1{e^2} \]

\(\mathbf{Problem\ 9}\) 证明:

\(\mathbf{Lemma\ 3.}\) \(l = \lim_{x \rightarrow +\infty} f(x)\) 的充要条件是对任意正无穷 \(\{x_n\}\)\(l = \lim_{n \rightarrow +\infty} f(x_n)\)。证明:

​ 必要性:\(\forall \epsilon > 0, \exists A, \forall x > A, |f(x) - l| < \epsilon\),此时又有 \(\exists N, \forall n > N, x_n > A\),故 \(|f(x_n) - l| < \epsilon\)\(l = \lim_{n \rightarrow +\infty} f(x_n)\)

​ 充分性:若 \(\exists \epsilon > 0, \forall A, \exists x > A, |f(x) - l| > \epsilon\),则先取 \(A = 1\),得 \(x_1 > 1\)\(|f(x_1) - l| > \epsilon\);再取 \(A = x_1 + 1\),得 \(x_2 > x_1 + 1\)\(|f(x_2) - l| > \epsilon\);再取 \(A = x_2 + 1\),得 \(x_3 > x_2 + 1\)\(|f(x_3) - l| > \epsilon\)……依此类推即可得到数列 \(\{x_n\}\) 满足 \(x_{n + 1} - x_n > 1\)\(|f(x_n) - l| > \epsilon\)。因此 \(\forall A > 0, x_A - x_1 > A - 1\)\(x_A > A + x_1 - 1 > A\),即 \(\{x_n\}\) 是正无穷但不收敛于 \(l\)

​ 因此两命题充要,证毕。

​ 现证原命题必要性:设 \(l = \lim_{x \rightarrow +\infty} f(x)\),则 \(\forall \epsilon > 0, \exists A, \forall x > A, |f(x) - l| < \frac \epsilon 2\),又有 \(x_1, x_2 > A\),故 \(|f(x_1) - f(x_2)| = |f(x_1) - l + l - f(x_2)| \le |f(x_1) - l| + |f(x_2) - l| < \epsilon\)

​ 充分性:取任一正无穷 \(\{x_n\}\),则 \(\forall A > 0, \exists N, \forall n > N, x_n > A\)。因此 \(\forall \epsilon > 0, \exists A, N > 0, \forall m > n > N, |f(x_n) - f(x_m)| < \epsilon\)\(\{f(x_n)\}\) 为一基本列,记 \(l_x = \lim_{n \rightarrow +\infty} f(x_n)\)。再取一正无穷 \(\{y_n\}\) 并记 \(l_y = \lim_{n \rightarrow +\infty} f(y_n)\)。接着构造 \(\{z_n\}\) 使得:

\[z_{2n - 1} = x_n,\qquad z_{2n} = y_n \]

​ 易知 \(\{z_n\}\) 也为正无穷,且 \(\{x_n\}\)\(\{y_n\}\) 均为 \(\{z_n\}\) 子列,故 \(l_x = l_y\),由 \(\mathbf{Lemma\ 3.}\) 可知 \(l_x = \lim_{x \rightarrow +\infty} f(x)\)

2.6 节

\(\mathbf{Problem\ 1}\) 解:

​ (2)取 \(|x|\) 为一阶无穷大,则:

\[\lim_{x \rightarrow \infty} \frac{x - 5x^3 + x^{10}}{|x|^{10}} = \lim_{x \rightarrow \infty} \frac{x - 5x^3 + x^{10}}{x^{10}} = \lim_{x \rightarrow \infty} \left(1 - \frac 5{x^7} + \frac 1{x^9}\right) = 1 \]

​ 故 \(x - 5x^3 + x^{10}\) 为十阶无穷大。

​ (4)取 \(x - 1\) 为一阶无穷小,则:

\[\lim_{x \rightarrow 1} \frac{x^3 - 3x + 2}{(x - 1)^2} = \lim_{x \rightarrow 1} (x + 2) = 3 \]

​ 故 \(x^3 - 3x + 2\) 为二阶无穷小。

​ (6)取 \(\frac 1{x - 1}\) 为一阶无穷大,则:

\[\lim_{x \rightarrow 1} \frac{x - 1}{\sin (\pi x)} = -\lim_{x \rightarrow 1} \frac{x - 1}{\sin (\pi(x - 1))} = -\frac 1{\pi\lim_{x \rightarrow 1} \frac{\sin \pi(x - 1)}{\pi(x - 1)}} \overset{t = \pi(x - 1)}= -\frac 1\pi \cdot \frac 1{\lim_{t \rightarrow 0} \frac{\sin t}t} = -\frac 1\pi \]

​ 故 \(\frac 1{\sin (\pi x)}\) 为一阶无穷大。

​ (8)取 \(x^\frac 16\) 为一阶无穷小,则:

\[\lim_{x \rightarrow 0} \frac{(x^2 + x^\frac 13)^\frac 12}{x^\frac 16} = \lim_{x \rightarrow 0} (x^\frac 53 + 1)^\frac 12 = 1 \]

​ 故 \(\sqrt{x^2 + \sqrt[3]x}\) 为一阶无穷小。

​ (10)取 \(x\) 为一阶无穷小,则:

\[\lim_{x \rightarrow 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}x = \lim_{x \rightarrow 0} \frac 2{\sqrt{1 + x} + \sqrt{1 - x}} = \frac 2{\lim_{x \rightarrow 0} \left(\sqrt{1 + x} + \sqrt{1 - x}\right)} = 1 \]

​ 故 \(\sqrt{1 + x} - \sqrt{1 - x}\) 为一阶无穷小。

​ (12)取 \(x\) 为一阶无穷小,则:

\[\lim_{x \rightarrow 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 - \sin x}}x = \lim_{x \rightarrow 0} \frac{\sin x (1 + \frac 1{\cos x})}{x(\sqrt{1 + \tan x} + \sqrt{1 - \sin x})} = \frac {1 + \lim_{x \rightarrow 0} \frac 1{\cos x}}{\lim_{x \rightarrow 0}(\sqrt{1 + \tan x} + \sqrt{1 - \sin x})} = 1 \]

​ 故 \(\sqrt{1 + \tan x} - \sqrt{1 - \sin x}\) 为一阶无穷小。

​ (14)取 \(x\) 为一阶无穷大,则:

\[\lim_{x \rightarrow \infty} \frac{\prod_{i = 1}^n (1 + x^i)}{\prod_{i = 1}^n x^i} = \lim_{x \rightarrow \infty} \prod_{i = 1}^n \left(1 + \frac 1{x^i}\right) = \prod_{i = 1}^n \lim_{x \rightarrow \infty} \left(1 + \frac 1{x^i}\right) = 1 \]

​ 故 \(\prod_{i = 1}^n (1 + x^i)\)\(\sum_{i = 1}^n i = \frac{n(n + 1)}2\) 阶无穷大。

\(\mathbf{Problem\ 2}\) 证明:

​ (3)若 \(f\) 满足:\(\lim_{x \rightarrow x_0} \frac{f(x)}{\alpha(x)} = 0\),则 \(\lim_{x \rightarrow x_0} \frac{(f(x))^k}{(\alpha(x))^k} = \lim_{x \rightarrow x_0} (\frac{f(x)}{\alpha(x)})^k = \lim_{t \rightarrow 0} t^k = 0\)

​ 若 \(f\) 满足:\(\lim_{x \rightarrow x_0} \frac{f(x)}{(\alpha(x))^k} = 0\),则 \(\lim_{x \rightarrow x_0} \frac{(f(x))^\frac 1k}{\alpha(x)} = \lim_{x \rightarrow x_0} (\frac{f(x)}{(\alpha(x))^k})^\frac 1k = \lim_{t \rightarrow 0} t^\frac 1k = 0\)​​。

​ 故 \((o(\alpha))^k = o(\alpha^k)\)

​ (4)令 \(f(x) = \frac{1}{1 + \alpha(x)} - (1 - \alpha(x)) = \frac{(\alpha(x))^2}{1 + \alpha(x)}\),则:

\[\lim_{x \rightarrow x_0} \frac{f(x)}{\alpha(x)} = \lim_{x \rightarrow x_0} \frac{\alpha(x)}{1 + \alpha(x)} = \frac{\lim_{x \rightarrow x_0} \alpha(x)}{1 + \lim_{x \rightarrow x_0} \alpha(x)} = 0 \]

​ 故 \(f = o(\alpha)\)

\(\mathbf{Problem\ 3}\) 解:

​ (1)

\[\begin{align*} \lim_{x \rightarrow 0} \frac{x \tan^4 x}{\sin^3 x(1 - \cos x)} = \lim_{x \rightarrow 0} \frac{x \sin x}{\cos^4 x(1 - \cos x)} = \lim_{x \rightarrow 0} \frac{x^2}{1 - \cos x} = \frac 1{\lim_{x \rightarrow 0} \frac{1 - \cos x}{x^2}} = 2 \end{align*} \]

​ (3)

\[\begin{align*} \lim_{x \rightarrow 0} \frac{\sqrt{1 + x^4} - 1}{1 - \cos^2 x} = \lim_{x \rightarrow 0} \frac{x^4}{(1 - \cos x)(1 + \cos x)(\sqrt{1 + x^4} + 1)} = \frac 14 \lim_{x \rightarrow 0} \frac{x^4}{1 - \cos x} = \frac 14 \frac{\lim_{x \rightarrow 0} x^2}{\lim_{x \rightarrow 0} \frac{1 - \cos x}{x^2}} = 0 \end{align*} \]

​ (5)

\[\begin{align*} \lim_{x \rightarrow 0} \frac{(1 + x + x^2)^\frac 1n - 1}{\sin 2x} = \lim_{x \rightarrow 0} \frac{\sum_{i = 1}^\infty \binom{\frac 1n}i x^i (1 + x)^i}{2x} = \frac 12 \lim_{x \rightarrow 0} \sum_{i = 1}^\infty \binom{\frac 1n}i x^{i - 1} (1 + x)^i\\ = \frac 12\left(\frac 1n + \sum_{i = 2}^\infty \binom{\frac 1n}i \lim_{x \rightarrow 0}\left(x^{i - 1} (1 + x)^i\right)\right) = \frac 1{2n} \end{align*} \]

2.7 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)不能,证明:

​ 令 \(x_n = \frac{1}{n\pi}, y_n = \frac{1}{(2n + 1/2)\pi}\),则 \(\lim_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} y_n = 0\)

​ 而 \(f(x_n) = \sin(n\pi) = 0, f(y_n) = \sin(2n\pi + \frac \pi 2) = 1\),因此 \(\lim_{x \rightarrow 0} f(x)\) 不存在,故不可能存在满足条件的 \(f(0)\)​。

​ (2)定义域为 \((-\infty, 0) \cup (0, +\infty)\)。又有:

\[0 \le \big|x \sin\frac 1x\big| \le |x| \]

​ 故 \(\lim_{x \rightarrow 0} \big|x \sin\frac 1x\big| = 0\),因此 \(\lim_{x \rightarrow 0} x \sin\frac 1x = 0\)。故 \(x = 0\) 处为 \(f(x)\) 的可去间断点。

​ (3)是,证明:令 \(t = x_0 + h\),则:

\[\lim_{h \rightarrow 0} f(x_0 + h) = \lim_{t \rightarrow x_0} f(t) = f(x_0) \]

​ 此即 \(f(x)\)\(x_0\)​ 处连续的定义。

​ (4)不是,反例:\(f(x) = \frac 1{|x|}\)。则 \(f(x)\)\(0\) 处有:

\[\lim_{h \rightarrow 0} (f(h) - f(-h)) = 0 \]

​ 而 \(f(x)\)\(0\) 处显然不连续。

​ (5)\(f(x) = 0\) 对任意 \(x \in [a, b]\) 成立,证明:

​ 任取 \(x_0 \in (a, b)\),则有 \(f(x_0) = \lim_{x \rightarrow x_0} f(x)\),即 \(\forall \epsilon > 0, \exists \delta > 0, \forall x\) 若满足 \(0 < |x - x_0| < \delta\),则有 \(|f(x) - f(x_0)| < \epsilon\)。而对任意 \(\delta > 0\),若 \(x_0\) 无理,则一定有有理数 \(q \in (a, b)\) 使得 \(0 < |q - x_0| < \delta\),因而 \(|0 - f(x_0)| = |f(x_0)| < \epsilon\),则 \(f(x_0) = 0\)。若 \(x_0\) 有理则由定义知 \(f(x_0) = 0\)​。

​ 对于 \(x_0 = a\),则有 \(f(x_0) = \lim_{x \rightarrow x_0^+} f(x)\),即 \(\forall \epsilon > 0, \exists \delta > 0, \forall x \in (a, a + \delta)\),有 \(|f(x) - f(a)| < \epsilon\)。而对任意 \(\delta > 0\),若 \(x_0\) 无理,则一定有有理数 \(q \in (a, b)\) 使得 \(q \in (a, a + \delta)\),因而 \(|0 - f(a)| = |f(a)| < \epsilon\),则 \(f(a) = 0\)。若 \(a\) 有理则由定义知 \(f(a) = 0\)。同理可得 \(f(b) = 0\)

\(\mathbf{Problem\ 2}\) 解:

​ (1)\(f(0) = 0 = \lim_{x \rightarrow 0} f(x)\),故 \(f(x)\)\(0\) 处连续。

​ (2)\(f(0) = 0 = \lim_{x \rightarrow 0^+} f(x)\),而 \(\lim_{x \rightarrow 0^-} f(x) = -1\),故 \(f(x)\)\(0\) 处右连续。

​ (3)\(\forall \epsilon > 0, \exists \delta = \frac 1{\sqrt{\ln \max(2, \frac 1\epsilon)}}, \forall x\) 若满足 \(0 < |x| < \delta\),则有:

\[|e^{-\frac 1{x^2}}| = e^{-\frac 1{|x|^2}} < e^{-\frac 1{\delta^2}} < e^{\ln \epsilon} = \epsilon \]

​ 故 \(\lim_{x \rightarrow 0} e^{-\frac 1{x^2}} = 0 = f(0)\),即 \(f(x)\)\(0\)​ 处连续。

​ (4)对 \(x \neq 0\),有 \(f(-x) = \frac{-\sin x}{|x|} = -f(x)\),而 \(\lim_{x \rightarrow 0^+} f(x) = \lim_{x \rightarrow 0^+} \frac{\sin x}x = 1\),故 \(\lim_{x \rightarrow 0^-} f(x) = - \lim_{x \rightarrow 0^-} f(-x) = - \lim_{x \rightarrow 0^+} f(x) = -1 \neq f(0)\)。则 \(f(x)\)\(0\) 处右连续。

​ (5)令 \(t = \frac 1{x^2}\),则 \(\lim_{x \rightarrow 0} t = \infty\),故:

\[\lim_{x \rightarrow 0} (1 + x^2)^{\frac 1{x^2}} = \lim_{t \rightarrow \infty} (1 + \frac 1t)^t = e \neq 2.7 \]

​ 故 \(f(x)\)\(0\) 处不连续。

\(\mathbf{Problem\ 3}\) 解:由于 \(f(x)\) 连续:

\[\lim_{x \rightarrow -1^+} f(x) = \lim_{x \rightarrow -1^+} (ax^2 + bx + c) = a - b + c = f(-1) = -1\\ \lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^-} (ax^2 + bx + c) = a + b + c = f(1) = 1\\ \lim_{x \rightarrow 0} f(x) = \lim_{x \rightarrow 0} (ax^2 + bx + c) = c = f(0) = 0 \]

​ 解得:\(a = 0, b = 1, c = 0\)

\(\mathbf{Problem\ 4}\) 解:

​ (1)假设 \(g(x_0)\) 有定义:

​ 已知 \(f(x_0) = \lim_{x \rightarrow x_0} f(x)\),若 \(\lim_{x \rightarrow x_0} g(x)\) 不存在或为无穷,则 \(\lim_{x \rightarrow x_0} \left(f(x) + g(x)\right)\) 亦不存在或为无穷,此时 \(f + g\)\(x_0\) 不连续。若 \(\lim_{x \rightarrow x_0} g(x)\) 存在且有限,则 \(\lim_{x \rightarrow x_0} (f(x) + g(x)) = f(x_0) + \lim_{x \rightarrow x_0} g(x) \neq f(x_0) + g(x_0)\),则 \(f + g\)\(x_0\) 不连续。综上可得 \(f + g\)\(x_0\) 不连续。

​ 若 \(f(x_0) \neq 0\),则若 \(\lim_{x \rightarrow x_0} g(x)\) 不存在或为无穷,那么 \(\lim_{x \rightarrow x_0} f(x)g(x)\) 也不存在,此时 \(fg\)\(x_0\) 不连续。若 \(\lim_{x \rightarrow x_0} g(x)\) 存在且有限,则 \(\lim_{x \rightarrow x_0} f(x)g(x) = f(x_0) \cdot \lim_{x \rightarrow x_0} g(x) \neq f(x_0)g(x_0)\),则此时 \(fg\)\(x_0\) 不连续。综上可得当 \(f(x_0) \neq 0\)\(fg\)\(x_0\)​ 不连续。

​ 若 \(f(x_0) = 0\),则若 \(\lim_{x \rightarrow x_0} g(x)\) 存在且有限,就有 \(\lim_{x \rightarrow x_0} f(x)g(x) = 0 = f(x_0)g(x_0)\),此时 \(fg\)\(x_0\) 连续。若 \(\lim_{x \rightarrow x_0} g(x)\) 为无穷,则 \(\lim_{x \rightarrow x_0} f(x)g(x)\) 为未定式,\(fg\)\(x_0\) 处连续性无法确定。若 \(\lim_{x \rightarrow x_0} g(x)\) 不存在,则若 \(g\)\(x_0\) 的一个去心邻域内有界,即 \(\exists \delta, M > 0\) 使得对任意 \(x\) 若有 \(0 < |x - x_0| < \delta\) 则有 \(|g(x)| < M\),那么:

\[0 \le |f(x)g(x)| < M|f(x)|\\ 0 \le \lim_{x \rightarrow x_0} |f(x)g(x)| \le \lim_{x \rightarrow x_0} M|f(x)| = 0 \]

​ 则有 \(\lim_{x \rightarrow x_0} f(x)g(x) = 0 = f(x_0)g(x_0)\),此时 \(fg\)\(x_0\) 处连续。若不存在这样的一个邻域,则无法确定 \(\lim_{x \rightarrow x_0} f(x)g(x)\) 是否存在以及其值为何,例如:

​ (i)取 \(x_0 = 0\),令:

\[f(x) = x,\qquad g(x) = \begin{cases} 0,\quad x \notin \mathbb{Q} ~\mathrm{or}~ x = 0\\ \frac 1x,\quad x \in \mathbb{Q} ~\mathrm{and}~ x \neq 0\\ \end{cases} \]

​ 易得:

\[f(x)g(x) = \begin{cases} 0,\quad x \notin \mathbb{Q} ~\mathrm{or}~ x = 0\\ 1,\quad x \in \mathbb{Q} ~\mathrm{and}~ x \neq 0\\ \end{cases} \]

​ 此时 \(\lim_{x \rightarrow 0} f(x)g(x)\) 不存在,故 \(fg\)\(0\)​ 处不连续。

​ (ii)取 \(x_0 = 0\),令:

\[f(x) = x,\qquad g(x) = \begin{cases} 0,\quad x \notin \mathbb{Q} ~\mathrm{or}~ x = 0\\ \frac 1{px},\quad x \in \mathbb{Q} ~\mathrm{and}~ x \neq 0, \frac qp = x~(p, q \in \mathbb{Z}, p > 0)\\ \end{cases} \]

​ 易得:

\[f(x)g(x) = \begin{cases} 0,\quad x \notin \mathbb{Q} ~\mathrm{or}~ x = 0\\ \frac 1p,\quad x \in \mathbb{Q} ~\mathrm{and}~ x \neq 0, \frac qp = x~(p, q \in \mathbb{Z}, p > 0)\\ \end{cases} \]

​ 则 \(\forall \epsilon > 0, \exists \delta = \epsilon, \forall x \in (-\delta, 0) \cup (0, \delta)\) 都有:(\(1^*\))若 \(x \notin \mathbb{Q}\),则 \(|f(x)g(x) - 0| = 0 < \epsilon\);(\(2^*\))若 \(x \in \mathbb{Q}, x = \frac qp, p > 0\),则 \(q \in (-p\delta, 0) \cup (0, p\delta)\),因此 \(p\delta \ge 1\)\(\frac 1p \le \delta = \epsilon\),就有 \(|f(x)g(x) - 0| = \frac 1p \le \epsilon\)。综上可知 \(\lim_{x \rightarrow 0} f(x)g(x) = 0 = f(0)g(0)\)\(fg\)\(0\)​ 处连续。

​ 若 \(g(x_0)\) 无定义,则 \(fg\)\(x_0\)​ 处无定义,自然在此处不连续。

​ (2)假设 \(f(x_0), g(x_0)\) 均有定义:

​ 若存在 \(F = \lim_{x \rightarrow x_0} f(x), G = \lim_{x \rightarrow x_0} g(x)\)​,则:

\(F + G \neq f(x_0) + g(x_0)\),故 \(f + g\)\(x_0\) 处不连续。

​ (i)若 \(f(x_0), g(x_0) \neq 0\),则有 \(\frac F{f(x_0)}, \frac G{g(x_0)} \neq 1\),故 \(\frac {FG}{f(x_0)g(x_0)} \neq 1\)\(FG \neq f(x_0)g(x_0)\),因此 \(fg\)\(x_0\)​ 处不连续。

​ (ii) 若 \(f(x_0) = 0, g(x_0) \neq 0\),则有 \(F \neq 0, \frac G{g(x_0)} \neq 1\),当 \(G = 0\)\(FG = 0 = f(x_0)g(x_0)\)\(fg\)\(x_0\) 处连续;当 \(G \neq 0\)\(FG \neq 0 = f(x_0)g(x_0)\)\(fg\)\(x_0\) 处不连续。

​ (iii)若 \(f(x_0) \neq 0, g(x_0) = 0\),与(ii)同理可知此时 \(F = 0\)\(fg\)\(x_0\) 处连续的充分必要条件。

​ (iv)若 \(f(x_0) = g(x_0) = 0\),则 \(F \neq 0, G \neq 0\),故 \(FG \neq 0 = f(x_0)g(x_0)\)\(fg\)\(x_0\) 不连续。

​ 若 \(F\) 不存在而 \(G\) 存在,则:

\(F + G\) 不存在故 \(f + g\)\(x_0\) 处不连续。

​ (i)若 \(G = 0\)\(f(x)\)\(x_0\) 的一个去心邻域内有界,则 \(\lim_{x \rightarrow x_0} f(x)g(x) = 0\),又有 \(g(x_0) \neq G = 0\),故此时 \(f(x_0) = 0\)\(fg\)\(x_0\) 处连续的充分必要条件。

​ (ii)若 \(G = 0\) 且不存在一个 \(x_0\) 的去心邻域使得 \(f(x)\) 在该区域内有界,则由(1)可知此时 \(\lim_{x \rightarrow x_0} f(x)g(x)\) 不确定,故 \(fg\)\(x_0\)​ 处的连续性不定。

​ (iii)若 \(G \neq 0\)\(\lim_{x \rightarrow x_0} f(x)g(x)\) 不存在,\(fg\)\(x_0\)​ 处不连续。

​ 若 \(F\) 存在而 \(G\) 不存在,同上有:

\(F + G\) 不存在故 \(f + g\)\(x_0\) 处不连续。

​ (i)若 \(F = 0\)\(g(x)\)\(x_0\) 的一个去心邻域内有界,则此时 \(g(x_0) = 0\)\(fg\)\(x_0\) 处连续的充分必要条件。

​ (ii)若 \(F = 0\) 且不存在一个 \(x_0\) 的去心邻域使得 \(g(x)\) 在该区域内有界,则此时 \(fg\)\(x_0\)​ 处的连续性不定。

​ (iii)若 \(F \neq 0\)\(fg\)\(x_0\)​​ 处不连续。

​ 若 \(F, G\) 均不存在,则:

\(f + g\)\(x_0\) 处不一定连续,\(fg\)\(x_0\) 处不一定连续。例如:取 \(x_0 = 0\),令:

\[f(x) = \begin{cases} 0,\quad x = 0\\ \sin \frac 1x,\quad x \neq 0 \end{cases}\qquad g(x) = -f(x) \]

​ 则 \(\lim_{x \rightarrow 0} f(x) + g(x) = 0 = f(0) + g(0)\)\(f + g\)\(0\) 处连续。再令:

\[f(x) = \begin{cases} 1,\quad x = 0 ~\mathrm{or}~ x = \frac 1{n\pi} ~(n \in \mathbb{Z}, n \neq 0)\\ \sin \frac 1x,\quad \mathrm{Otherwise} \end{cases}\qquad g(x) = \frac 1{f(x)} \]

​ 则 \(\lim_{x \rightarrow 0} f(x)g(x) = 1 = f(0)g(0)\)\(fg\)\(0\) 处连续。

\(\mathbf{Problem\ 5}\) 证明:取 \(\epsilon = \frac {f(x_0)}2\),则 \(\exists \delta > 0, \forall x \in (x_0 - \delta, x_0 + \delta)\)\(|f(x) - f(x_0)| < \epsilon = \frac {f(x_0)}2\),即:

\[\frac 12 f(x_0) < f(x) < \frac 32 f(x_0) \]

\(\mathbf{Problem\ 8}\) 证明:若 \(f\)\(x\) 处连续,则 \(g(x) = f(x)\),故 \(\lim_{t \rightarrow x} g(t) = \lim_{t \rightarrow x} f(t) = g(x)\)\(g\)\(x\) 处连续。

​ 若 \(f\)\(x\) 处不连续,则这是 \(f\) 的一个可去间断点,则 \(g(x) = \lim_{t \rightarrow x^+} f(t) = \lim_{t \rightarrow x^+} g(t)\),同理 \(g(x) = \lim_{t \rightarrow x^-} f(t) = \lim_{t \rightarrow x^-} g(t)\),故 \(g(x) = \lim_{t \rightarrow x} g(t)\)\(g\)\(x\) 处连续。

\(\mathbf{Problem\ 10}\) 证明:易证 \(f(x) = f(1)x\)\(x \in \mathbb{Q}\) 成立。任取 \(x \in \mathbb{R}\),将其写为小数形式:

\[x = A.x_1 x_2 x_3 x_4 \cdots x_n x_{n + 1} \cdots \]

​ 构造数列 \(a_0 = A, a_n = A.x_1 x_2 x_3 \cdots x_n \in \mathbb{Q}\),则 \(f(a_n) = f(1)a_n\)\(\lim_{n \rightarrow \infty} a_n = x\)。由于 \(f\)\(x\) 处连续,则 \(f(x) = \lim_{t \rightarrow x} f(t)\)。而 \(\lim_{n \rightarrow \infty} f(a_n) = f(1) \lim_{n \rightarrow \infty} a_n = f(1)x\),故 \(\lim_{t \rightarrow x} f(t) = \lim_{n \rightarrow \infty} f(a_n) = f(1)x\)\(f(x) = f(1)x\)

2.8 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)

\[\lim_{x \rightarrow 1} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \rightarrow 1} \frac{x + 1}{2x + 1} = \frac 23 \]

​ (3)

\[\lim_{x \rightarrow 0} \frac{(1 + x)(1 + 2x)(1 + 3x) - 1}x = \lim_{x \rightarrow 0} \frac{6x + o(x)}x = 6 \]

​ (5)

\[\begin{align*} \lim_{x \rightarrow 1} \frac{x^{n + 1} - (n + 1)x + n}{(x - 1)^2} = \lim_{x \rightarrow 1} \frac{x(x^n - 1) - n(x - 1)}{(x - 1)^2} = \lim_{x \rightarrow 1} \frac{\sum_{i = 1}^n x^i - n}{x - 1} = \lim_{x \rightarrow 1} \frac{\sum_{i = 1}^n (1 + i(x - 1) + o(x - 1)) - n}{x - 1}\\ = \lim_{x \rightarrow 1} \frac{(x - 1)\sum_{i = 1}^n i + o(x - 1)}{x - 1} = \frac{n(n + 1)}2 \end{align*} \]

\(\mathbf{Problem\ 2}\) 解:

​ (1)令 \(t = x^{\frac 1{mn}}\),则 \(x \rightarrow 1\)\(t \rightarrow 1\),故:

\[\lim_{x \rightarrow 1} \frac{\sqrt[m]x - 1}{\sqrt[n]x - 1} = \lim_{t \rightarrow 1} \frac{t^n - 1}{t^m - 1} = \lim_{t \rightarrow 1} \frac{\sum_{i = 0}^{n - 1}t^i}{\sum_{i = 0}^{m - 1}t^i} = \frac nm \]

​ (3)

\[\sqrt[m]{1 + \alpha x} = 1 + \binom{\frac 1m}1 \alpha x + o(x) = 1 + \frac \alpha m x + o(x),\quad x \rightarrow 0\\ \sqrt[n]{1 + \beta x} = 1 + \binom{\frac 1n}1 \beta x + o(x) = 1 + \frac \beta n x + o(x),\quad x \rightarrow 0\\ \lim_{x \rightarrow 0} \frac{\sqrt[m]{1 + \alpha x} - \sqrt[n]{1 + \beta x}}x = \lim_{x \rightarrow 0} \frac{\left(\frac \alpha m - \frac \beta n\right)x + o(x)}x = \frac \alpha m - \frac \beta n \]

\(\mathbf{Problem\ 3}\) 解:

​ (1)该极限呈 \(1^\infty\) 形,又有:

\[\lim_{x \rightarrow 0} \frac 1{\sin x}\left(\frac{1 + \tan x}{1 + \sin x} - 1\right) = \lim_{x \rightarrow 0} \frac{\frac 1{\cos x} - 1}{1 + \sin x} = 0 \]

​ 因此原极限为 \(e^0 = 1\)

​ (3)该极限呈 \(1^\infty\) 形,又有:

\[\lim_{x \rightarrow \frac \pi4} \tan 2x(\tan x - 1) = \lim_{x \rightarrow \frac \pi4} \frac{2\tan x}{(1 - \tan x)(1 + \tan x)} (\tan x - 1) = \lim_{x \rightarrow \frac \pi4} -\frac{2\tan x}{1 + \tan x} = -1 \]

​ 因此原极限为 \(e^{-1} = \frac 1e\)

​ (5)该极限呈 \(1^\infty\) 形,又有:

\[\lim_{x \rightarrow +\infty} x\left(\sin \frac 1x + \cos \frac 1x - 1\right) = \lim_{x \rightarrow +\infty} x\sin \frac 1x + \lim_{x \rightarrow +\infty} x\left(\cos \frac 1x - 1\right) = 1 + \lim_{x \rightarrow +\infty} x\left(-\frac 1{2x^2}\right) = 1 \]

​ 因此原极限为 \(e^1 = e\)

​ (7)该极限呈 \(1^\infty\) 形,又有:

\[\lim_{n \rightarrow \infty} n\left(\cos \frac x{\sqrt{n}} - 1\right) = \lim_{n \rightarrow \infty} -n\cdot\frac {x^2}{2n} = -\frac{x^2}2 \]

​ 因此原极限为 \(e^{-\frac{x^2}2}\)

​ (9)该极限呈 \(1^\infty\) 形,又有:

\[\lim_{x \rightarrow a} \frac 1{x - a}\left(\frac{\sin x}{\sin a} - 1\right) = \lim_{x \rightarrow a} \frac{\sin \frac{x - a}2}{x - a} \frac{2\cos \frac{x + a}2}{\sin a} = \lim_{x \rightarrow a} \frac{\cos \frac{x + a}2}{\sin a} = \cot a \]

​ 因此原极限为 \(e^{\cot a}\)

\(\mathbf{Problem\ 4}\) 解:由 \(|x| < 1\) 可得 \(x < 1, x^n < 1\),则有:

\[0 \le \left|\frac{\sum_{i = 1}^n x^i}n\right| = \frac{|x|}n\left(\frac{1 - x^n}{1 - x}\right) \le \frac{|x|}n\left(\frac{1 + |x|^n}{1 - x}\right) < \frac 2{n(1 - x)} \]

​ 因此:

\[\lim_{n \rightarrow \infty}\left|\frac{\sum_{i = 1}^n x^i}n\right| = 0 \Rightarrow \lim_{n \rightarrow \infty}\frac{\sum_{i = 1}^n x^i}n = 0 \]

​ 所以该极限呈 \(1^\infty\) 形,又有:

\[\lim_{n \rightarrow \infty} n\frac{\sum_{i = 1}^n x^i}n = \lim_{n \rightarrow \infty} \sum_{i = 1}^n x^i = \lim_{n \rightarrow \infty} x\left(\frac{1 - x^n}{1 - x}\right) = \frac x{1 - x} \]

2.9 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)不一致连续,证明:取 \(s_n = \frac 1{2\pi n}, t_n = \frac 1{2\pi n + \pi}\),则有:

\[|f(s_n) - f(t_n)| = |\cos(2\pi n) - \cos(2\pi n + \pi)| = 2 \]

​ 然而 \(|s_n - t_n| = \frac 1{2n(2\pi n + \pi)} \rightarrow 0\ (n \rightarrow \infty)\),故 \(f(x) = \cos \frac 1x\) 不一致连续。

​ (3)一致连续,证明:\(\forall \epsilon > 0, \exists \delta = \epsilon^3, \forall x_1 > x_2 \ge 0~s.t.~x_1 - x_2 < \delta\) 有:

\[0 < \left(\sqrt[3]{x_1} - \sqrt[3]{x_2}\right)^3 = x_1 - 3x_1^\frac 23 x_2^\frac 13 + 3x_1^\frac 13 x_2^\frac 23 - x_2 = x_1 - x_2 + 3\sqrt[3]{x_1x_2}\left(\sqrt[3]{x_2} - \sqrt[3]{x_1}\right) < x_1 - x_2 < \epsilon^3\\ \left|\sqrt[3]{x_1} - \sqrt[3]{x_2}\right| = \sqrt[3]{x_1} - \sqrt[3]{x_2} < \epsilon \]

​ 故 \(f(x) = \sqrt[3]x\)\([0, +\infty)\) 一致连续。

​ (5)不一致连续,证明:取 \(s_n = 2\pi n, t_n = 2\pi n + \frac 1n\),则有:

\[f(s_n) = 2\pi n,\qquad f(t_n) = \frac {2\pi n + \frac 1n}{1 + (2\pi n + \frac 1n)^2 \sin^2 \frac 1n} \]

​ 又有 \(n \ge 1 > \frac 3\pi\),则 \(\sin \frac 1n > \frac 1n \cos \frac 1n > \frac 1n \cos \frac \pi3 = \frac 1{2n}\),故有:

\[f(t_n) < \frac{2\pi n + \frac 1n}{1 + (\frac 1{2n})^2(2\pi n + \frac 1n)^2} = \frac{2\pi n + \frac 1n}{1 + (\pi + \frac 1{2n^2})^2} < \frac{2\pi n}{1 + \pi^2} \]

​ 因此:

\[f(s_n) - f(t_n) > 2\pi n - \frac{2\pi n}{1 + \pi^2} = \frac{2\pi^3 n}{1 + \pi^2} \ge \frac{2\pi^3}{1 + \pi^2} \]

​ 然而 \(|s_n - t_n| = \frac 1n \rightarrow 0~(n \rightarrow \infty)\),因此 \(f(x) = \frac x{1 + x^2 \sin^2 x}\)\([0, +\infty)\) 不一致连续。

\(\mathbf{Problem\ 3}\) 证明:

\(\mathbf{Lemma\ 1.}\) \(l = f(x_0 -)\) 的充要条件是对任意 \(\{x_n\}~s.t.~x_n < x_0, x_n \rightarrow x_0~(n \rightarrow \infty)\),满足 \(f(x_n) \rightarrow l~(n \rightarrow \infty)\)\(l = f(x_0 +)\) 的充要条件对任意 \(\{x_n\}~s.t.~x_n > x_0, x_n \rightarrow x_0~(n \rightarrow \infty)\),满足 \(f(x_n) \rightarrow l~(n \rightarrow \infty)\)。证明:先证左极限对应的命题。令 \(p : l = f(x_0 -), q : \forall \{x_n\}~s.t.~x_n < x_0, x_n \rightarrow x_0~(n \rightarrow \infty), f(x_n) \rightarrow l~(n \rightarrow \infty)\)

​ 必要性:显然。

​ 充分性:若 \(l \neq f(x_0 -)\),则 \(\exists \epsilon > 0, \forall n \in \mathbb{N^*}, \exists x_n~s.t.~0 < |x_n - x_0| < \frac 1n\) 使得 \(|f(x_n) - l| > \epsilon\)

​ 因此 \(x_n \rightarrow x_0~(n \rightarrow \infty)\)\(l \neq \lim_{n \rightarrow \infty} f(x_n)\),即 \(q\) 为假命题。证毕。

​ 现取一数列 \(\{a_n\}~s.t~a_n > a, a_n \rightarrow a~(n \rightarrow \infty)\),则 \(\forall \delta > 0, \exists N \in \mathbb{N^*}, \forall m > n > N, |a_n - a_m| < \delta\)。又因为 \(f\)\((a, b)\) 上一致连续,故 \(\forall \epsilon > 0, \exists N \in \mathbb{N^*}, \forall m > n > N, |f(a_n) - f(a_m)| < \epsilon\),即 \(\{f(a_n)\}\) 为 Cauchy 列,故存在有限数 \(A = \lim_{n \rightarrow \infty} f(a_n)\)

​ 再取数列 \(\{b_n\}~s.t~b_n > a, b_n \rightarrow a~(n \rightarrow \infty)\),故存在 \(B = \lim_{n \rightarrow \infty} f(b_n)\)。构造数列 \(\{c_n\}\) 满足:

\[c_{2n - 1} = a_n,\qquad c_{2n} = b_n \]

​ 则 \(c_n > a, c_n \rightarrow a~(n \rightarrow \infty)\),因此 \(\{f(c_n)\}\) 收敛,则有 \(A = B\),故 \(A = B = f(a+)\)。同理可证 \(f(b-)\) 存在且有限。

2.10 节

\(\mathbf{Problem\ 2}\) 解:

​ (i)若 \(I\) 为有限区间:

\(\mathbf{Lemma\ 2.}\) 若函数 \(f\) 在一有限区间 \(I\) 上一致连续,则 \(f\)\(I\) 上有界。证明:

​ 若 \(I\) 为闭区间,则显然 \(f\)\(I\) 上有界。

​ 若 \(I = [a, b)\),由于 \(f\)\(I\) 上一致连续,故 \(f(b-)\) 存在,现令 \(f(b) = f(b-)\),则 \(f\)\([a, b]\) 上一致连续,故 \(f\)\([a, b]\) 上有界,因此 \(f\)\(I \subset [a, b]\) 上也有界。

​ 同理,当 \(I = (a, b]\)\(I = (a, b)\)\(f\)\(I\) 上也有界。

​ 因此 \(\exists M, \forall x \in I, |f(x)|, |g(x)| < M\),又有 \(\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in I~s.t.~|x_1 - x_2| < \delta, |f(x_1) - f(x_2)|, |g(x_1) - g(x_2)| < \frac {\epsilon}{2M}\),故:

\[\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in I~s.t.~|x_1 - x_2| < \delta,\\ |f(x_1)g(x_1) - f(x_2)g(x_2)| \le |g(x_1)| |f(x_1) - f(x_2)| + |f(x_2)| |g(x_1) - g(x_2)| < M(\frac{\epsilon}{2M} + \frac{\epsilon}{2M}) = \epsilon \]

​ 因此 \(fg\)\(I\) 上一致连续。

​ (ii)若 \(I\) 为无穷区间:考虑 \(I = [0, +\infty), f(x) = g(x) = \sqrt x\),则 \(f(x)g(x) = x\),此时 \(fg\)\(I\) 上一致连续。

​ 再考虑 \(I = (-\infty, +\infty), f(x) = g(x) = x\),则 \(f(x)g(x) = x^2\),此时 \(fg\)\(I\) 上不一致连续。

​ 因此 \(fg\)\(I\) 上的一致连续性未定。

\(\mathbf{Problem\ 3}\) 证明:若 \(f\)\((a, b)\) 上不一致连续,则 \(\exists \epsilon_0 > 0, \forall n, \exists s_n, t_n \in (a, b)~s.t~|s_n - t_n| < \frac 1n, |f(s_n) - f(t_n)| > \epsilon_0\)

​ 由 \(s_n \in (a, b)\) 可知存在 \(\{s_n\}\) 的收敛子列 \(\{s_{k_n}\}\),设 \(s_{k_n} \rightarrow s^* \in [a, b]~(n \rightarrow \infty)\)。因此 \(|s_{k_n} - t_{k_n}| < \frac 1{k_n} \le \frac 1n\),则 \(t_{k_n} \rightarrow s^*~(n \rightarrow \infty)\)​。

​ 故:

\[\lim_{n \rightarrow \infty} |f(s_{k_n}) - f(t_{k_n})| = \begin{cases} |f(s^*) - f(s^*)| = 0,\qquad s^* \in (a, b)\\ |f(a+) - f(a+)| = 0,\qquad s^* = a\\ |f(b-) - f(b-)| = 0,\qquad s^* = b\\ \end{cases} \]

​ 就有 \(\epsilon_0 < \lim_{n \rightarrow \infty} |f(s_{k_n}) - f(t_{k_n})| = 0\),矛盾。

\(\mathbf{Problem\ 4}\) 证明:若 \(f\)\([a, +\infty)\) 上不一致连续,则 \(\exists \epsilon_0 > 0, \forall n, \exists s_n, t_n \in [a, +\infty)~s.t~|s_n - t_n| < \frac 1n, |f(s_n) - f(t_n)| > \epsilon_0\)

​ 由 \(s_n \in [a, +\infty)\) 可知存在 \(\{s_n\}\) 的单调递增子列 \(\{s_{k_n}\}\),设 \(s_{k_n} \rightarrow s^* \in [a, +\infty)~(n \rightarrow \infty)\)。因此 \(|s_{k_n} - t_{k_n}| < \frac 1{k_n} \le \frac 1n\),则 \(t_{k_n} \rightarrow s^*~(n \rightarrow \infty)\)​。

​ 故:

\[\lim_{n \rightarrow \infty} |f(s_{k_n}) - f(t_{k_n})| = \begin{cases} |f(s^*) - f(s^*)| = 0,\qquad s^* \neq +\infty\\ |f(+\infty) - f(+\infty)| = 0,\qquad s^* = +\infty\\ \end{cases} \]

​ 就有 \(\epsilon_0 < \lim_{n \rightarrow \infty} |f(s_{k_n}) - f(t_{k_n})| = 0\),矛盾。

\(\mathbf{Problem\ 6}\) 证明:令 \(f(x) = x^3 + 2x - 1\),则 \(f(0) = -1, f(1) = 2\),且:

\[\forall x_1 < x_2, f(x_1) - f(x_2) = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 2) = (x_1 - x_2)\left(\left(x_1 + \frac{x_2}2\right)^2 + \frac{3x_2^2}4 + 2\right) < 0 \]

​ 因此 \(f\)\(\mathbb{R}\) 上单调递增,故 \(f(x) = 0\) 有唯一实根且在 \((0, 1)\) 内。

\(\mathbf{Problem\ 8}\) 证明:对任意 \(n\),令 \(g(x) = f\left(x + \frac 1n\right) - f(x)\),注意到:

\[\sum_{i = 0}^{n - 1} g\left(\frac in\right) = \sum_{i = 0}^{n - 1} \left(f\left(\frac{i + 1}n\right) - f\left(\frac in\right)\right) = f(1) - f(0) = 0 \]

​ 若 \(\exists i \in \{0, 1, \cdots, n - 1\}\) 使 \(g\left(\frac in\right) = 0\),则 \(x_n = \frac in\),否则一定存在 \(p, q \in \{0, 1, \cdots, n - 1\}, p \neq q\) 满足 \(g\left(\frac pn\right) > 0, g\left(\frac qn\right) < 0\),因此必然有 \(x_n \in \left(\frac{\min(p, q)}n, \frac{\max(p, q)}n\right)\) 使得 \(g(x_n) = 0\)\(f(x_n) = f\left(x_n + \frac 1n\right)\)

\(\mathbf{Problem\ 10}\) 证明:若 \(f\) 连续,则存在有限区间 \([m, M] = \mathrm{Im}(f)\),令 \(U = \{f(x) | x \in [a, b] \cap \mathbb{Q}\}, V = \{f(x) | x \in [a, b] \cap (\mathbb{R} \verb|\| \mathbb{Q})\}\),则 \(U \cup V = \mathrm{Im}(f)\)

​ 因此 \(V \subset \mathbb{Q}\),则 \(V\) 为可数集。由于 \(U = f(\mathbb{Q} \cap [a, b])\)\(\mathbb{Q} \cap [a, b]\) 可数,因此 \(U\) 可数,则有 \(\mathrm{Im}(f)\) 可数即 \([m, M]\) 可数,故可以列出 \([m, M]\) 中的所有实数 \(r_1, r_2, r_3, \cdots\)

​ 现令 \(I_1 = [m, M]\),则对于以下三个闭区间:

\[S_{11} = \left[m, \frac {M + 2m}3\right], S_{12} = \left[\frac {M + 2m}3, \frac {2M + m}3\right], S_{13} = \left[\frac {2M + m}3, M\right] \]

​ 有 \(I_1 = S_{11} \cup S_{12} \cup S_{13}\),且 \((S_{1i} \cap S_{1j}) \cap S_{1k} = \varnothing~(\{i, j, k\} = \{1, 2, 3\})\),因此 \(\exists i \in \{1, 2, 3\}, r_1 \notin S_{1i}\),令 \(I_2 = S_{1i}\)

​ 依此类推:对于 \(I_n = [L, R]\)​,构造:

\[S_{n1} = \left[L, \frac {R + 2L}3\right], S_{n2} = \left[\frac {R + 2L}3, \frac {2R + L}3\right], S_{n3} = \left[\frac {2R + L}3, R\right] \]

​ 有 \(I_n = S_{n1} \cup S_{n2} \cup S_{n3}\),且 \((S_{ni} \cap S_{nj}) \cap S_{nk} = \varnothing~(\{i, j, k\} = \{1, 2, 3\})\),因此 \(\exists i \in \{1, 2, 3\}, r_n \notin S_{ni}\),令 \(I_{n + 1} = S_{ni}\)。这就得到了一列闭区间 \(\{I_1, I_2, I_3, \cdots\}\),满足:

  1. \(I_{n + 1} \subset I_n\)
  2. \(r_n \notin I_n\)
  3. \(|I_{n + 1}| = \frac 13 |I_n| = \frac 1{3^n} |I_1|\)​​。

​ 因此 \(\forall i \le n, r_i \notin I_n\) 并且 \(|I_n| \rightarrow 0~(n \rightarrow \infty)\),则:

\[\bigcap_{i = 1}^\infty I_i = c \neq r_k,\qquad k = 1, 2, 3, \cdots \]

​ 然而 \(c \in [m, M]\),因此 \(r_1, r_2, r_3, \cdots\) 无法列出 \([m, M]\) 的所有实数,即 \([m, M]\) 不可数,这就出现了矛盾。

\(\mathbf{Problem\ 12}\) 证明:

​ (1)设函数 \(f\) 的周期为 \(T\),由于 \(f\) 连续,则其在 \([0, T]\) 上必然一致连续,又因为 \(\forall x \in \mathbb{R_\infty}, \exists p \in \mathbb{Z}, \exists r \in [0, T)~s.t~x = pT + r\),所以:

\[\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2~s.t~|x_1 - x_2| < \delta, x_1 = p_1T + r_1, x_2 = p_2T + r_2\\ |f(x_1) - f(x_2)| = |f(r_1) - f(r_2)| < \epsilon \]

​ 因此 \(f\)\(\mathbb{R_\infty}\) 上一致连续。

​ (2)考虑 \(s_n = \sqrt{2\pi n}, t_n = \sqrt{2\pi n + \frac \pi2}\),则 \(f(s_n) = \sin^2 \sqrt{2\pi n}, f(t_n) = \sin^2 \sqrt{2\pi n + \frac \pi 2} + 1\),因此:

\[\begin{align*} |f(t_n) - f(s_n)| & = \left|1 + \sin\left(\sqrt{2\pi n + \frac \pi 2} - \sqrt{2\pi n}\right)\sin\left(\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}\right)\right|\\ & = \left|1 + \sin\left(\frac{\pi / 2}{\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}}\right)\sin\left(\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}\right)\right|\\ & \ge 1 - \left|\sin\left(\frac{\pi / 2}{\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}}\right)\sin\left(\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}\right)\right|\\ & \ge 1 - \left|\sin\left(\frac{\pi / 2}{\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}}\right)\right|\\ & > 1 - \sin\left(\frac{\pi}{4\sqrt{2\pi}}\right) > 1 - \sin \frac \pi 6 = \frac 12 \end{align*} \]

​ 然而 \(|s_n - t_n| = \frac{\pi / 2}{\sqrt{2\pi n + \frac \pi 2} + \sqrt{2\pi n}} \rightarrow 0~(n \rightarrow \infty)\),因此 \(f(x) = \sin^2 x + \sin x^2\)\(\mathbb{R_\infty}\) 上不一致连续,则 \(f\) 不是周期函数。

3.1 节

\(\mathbf{Problem\ 2}\)​ 证明:

\[\frac{f(b_n) - f(a_n)}{b_n - a_n} = \frac{f(b_n) - f(0)}{b_n} + \frac{a_n}{b_n - a_n}\left(\frac{f(b_n) - f(0)}{b_n} - \frac{f(0) - f(a_n)}{-a_n}\right) \]

​ 令 \(u_n = \frac{f(0) - f(a_n)}{-a_n}, v_n = \frac{f(b_n) - f(0)}{b_n}\),则 \(u_n, v_n \rightarrow f'(0)~(n \rightarrow \infty)\)。又有 \(b_n - a_n > 0, 0 > a_n > a_n - b_n\),则有:

\[-1 < c_n = \frac{a_n}{b_n - a_n} < 0,\quad \frac{f(b_n) - f(a_n)}{b_n - a_n} = v_n + c_n(v_n - u_n) \]

​ 又有:

\[0 \le |c_n(v_n - u_n)| = |c| \cdot |v_n - u_n| \le |v_n - u_n|,\quad \lim_{n \rightarrow \infty} |v_n - u_n| = 0 \]

​ 因此:

\[\lim_{n \rightarrow \infty} |c_n(v_n - u_n)| = 0 \Rightarrow \lim_{n \rightarrow \infty} c_n(v_n - u_n) = 0 \]

​ 所以有:

\[\lim_{n \rightarrow \infty} \frac{f(b_n) - f(a_n)}{b_n - a_n} = \lim_{n \rightarrow \infty} v_n = f'(0) \]

\(\mathbf{Problem\ 4}\) 证明:

\[\lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \frac 12\left(\lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}h + \lim_{h \rightarrow 0} \frac{f(x_0) - f(x_0 - h)}h\right) = f'(x_0) \]

​ 考虑 \(f(x) = |x|\),则:

\[\lim_{h \rightarrow 0} \frac{f(h) - f(-h)}{2h} = \lim_{h \rightarrow 0} \frac{h - h}{2h} = 0 \]

​ 然而 \(f\)\(0\) 处不可导。

\(\mathbf{Problem\ 7}\) 解:这是 \(1^\infty\) 形极限。

\[\lim_{n \rightarrow \infty} n\left(\frac{f(a + \frac 1n)}{f(a)} - 1\right) = \frac 1{f(a)}\lim_{n \rightarrow \infty} \left(\frac{f(a + \frac 1n) - f(a)}{1/n}\right) = \frac 1{f(a)}\lim_{n \rightarrow 0} \left(\frac{f(a + n) - f(a)}{n}\right) = \frac{f'(a)}{f(a)} \]

​ 因此原极限为 \(e^\frac {f'(a)}{f(a)}\)

\(\mathbf{Problem\ 8}\) 解:

​ (1)证明:

\[f'(a) = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}h = \lim_{h \rightarrow 0} \varphi(a + h) = \varphi(a) \]

​ (2)

\[g'(a) = \lim_{h \rightarrow 0} \frac{g(a + h) - g(a)}h = \lim_{h \rightarrow 0} \frac{|h|}h \varphi(a + h)\\ \lim_{h \rightarrow 0^-} \frac{|h|}h \varphi(a + h) = \lim_{h \rightarrow 0^-} -\varphi(a + h) = -\varphi(a)\\ \lim_{h \rightarrow 0^+} \frac{|h|}h \varphi(a + h) = \lim_{h \rightarrow 0^+} \varphi(a + h) = \varphi(a)\\ \]

​ 若 \(g'(a)\) 存在,则 \(-\varphi(a) = \varphi(a)\)\(\varphi(a) = 0\),此时 \(g'(a) = 0\)​。

\(\mathbf{Problem\ 10}\) 证明:

\[f'(0) = \lim_{h \rightarrow 0} \frac{f(h) - f(0)}h = \lim_{h \rightarrow 0} h^{\lambda - 1} \sin\frac 1h \]

​ 当 \(\lambda > 1\) 时:\(h^{\lambda - 1} \rightarrow 0~(h \rightarrow 0)\),又有:

\[0 \le \left|h^{\lambda - 1} \sin\frac 1h\right| \le |h^{\lambda - 1}|,\quad \lim_{h \rightarrow 0} |h^{\lambda - 1}| = 0 \]

​ 则:

\[\lim_{h \rightarrow 0} \left|h^{\lambda - 1} \sin\frac 1h\right| = 0,\quad \lim_{h \rightarrow 0} h^{\lambda - 1} \sin\frac 1h = 0 \]

​ 即 \(f'(0) = 0\)

​ 当 \(\lambda \le 1\) 时:取 \(s_n = \frac 1{2\pi n}, t_n = \frac 1{2\pi n + \frac \pi 2}\),令 \(g(h) = h^{\lambda - 1} \sin \frac 1h\),则 \(g(s_n) = 0, g(t_n) = (2\pi n + \frac \pi 2)^{1 - \lambda} \rightarrow +\infty~(n \rightarrow \infty)\)

​ 然而 \(s_n, t_n \rightarrow 0~(n \rightarrow \infty)\),因此 \(f'(0) = g(0)\) 不存在。

3.2 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)

\[y' = 3x^2 - 2 \]

​ (4)

\[y' = \frac 35 x^{-\frac 25} + \sin x + x\cos x \]

​ (5)

\[y' = \frac 6x + abe^{bx} \]

​ (8)

\[y' = \frac{ab}{\cos^2 bx} + \frac{ab}{1 + (ax)^2} \]

​ (9)

\[y' = \frac 13 x^{-\frac 23} \cos x - x^\frac 13 \sin x \]

​ (12)

\[y' = a^x \ln a \ln x + \frac{a^x}x \]

​ (13)

\[y' = 1 + \ln x \]

​ (16)

\[y' = \frac{(1 + \ln x)(1 + x^2) - x \ln x(2x)}{(1 + x^2)^2} = \frac{1 + \ln x + x^2 - x^2 \ln x}{(1 + x^2)^2} \]

​ (17)

\[y' = \frac{(-\sin x - \cos x)(\cos x + \sin x) - (\cos x - \sin x)(-\sin x + \cos x)}{(\cos x + \sin x)^2} = -\frac 2{1 + \sin 2x} \]

​ (20)

\[y' = 3\sin^2 x \cos x \]

​ (21)

\[y' = ae^{ax} \cos bx - be^{ax} \sin bx = (a\cos bx - b\sin bx)e^{ax} \]

​ (24)

\[y' = \frac {2x}{1 + (1 + x^2)^2} \]

​ (25)

\[y' = \frac 1{2\sqrt{x + \sqrt{x + \sqrt x}}}\left(1 + \frac 1{2\sqrt{x + \sqrt x}}\left(1 + \frac 1{2\sqrt x}\right)\right) \]

​ (28)

\[y' = a^{\sin x} \cos x \ln a \]

​ (30)

\[y' = \frac{e^x - e^{-x}}2 \]

\(\mathbf{Problem\ 2}\) 解:

​ (2)注意到 \((x^k)' = kx^{k - 1}\),则:

\[\sum_{k = 1}^n kx^{k - 1} = \sum_{k = 1}^n (x^k)' = \left(\sum_{k = 1}^n x^k\right)' = \left(\frac{x^{n + 1} - x}{x - 1}\right)' = \frac{nx^{n + 1} - (n + 1)x^n + 1}{(x - 1)^2} \]

​ 代入 \(x = \frac 12\) 即得:

\[\sum_{k = 1}^n \frac k{2^{k - 1}} = \frac n{2^{n - 1}} - \frac{n + 1}{2^{n - 2}} + 4 \]

\(\mathbf{Problem\ 3}\) 证明:

​ (1)

\[(1 + x)^n = \sum_{k = 0}^n \binom nk x^k\\ n(1 + x)^{n - 1} = \left((1 + x)^n\right)' = \left(\sum_{k = 0}^n \binom nk x^k\right)' = \sum_{k = 1}^n k\binom nk x^{k - 1} \]

​ 代入 \(x = 1\) 可得:

\[n2^{n - 1} = \sum_{k = 1}^n k\binom nk \]

\(\mathbf{Problem\ 4}\) 证明:设 \(T\)\(f\) 的一个周期,则:

\[f'(x + T) = \lim_{h \rightarrow 0} \frac{f(x + h + T) - f(x + T)}h = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}h = f'(x) \]

​ 因此 \(T\) 也是 \(f'\) 的周期。

\(\mathbf{Problem\ 5}\) 证明:

​ (1)

\[f'(-x) = \lim_{h \rightarrow 0} \frac{f(-x + h) - f(-x)}h = \lim_{h \rightarrow 0} \frac{-f(x - h) + f(x)}h = f'(x) \]

​ 因此 \(f'\) 是偶函数。几何解释:

图图

​ (2)

\[f'(-x) = \lim_{h \rightarrow 0} \frac{f(-x + h) - f(-x)}h = \lim_{h \rightarrow 0} \frac{f(x - h) - f(x)}h = -f'(x) \]

​ 因此 \(f'\)​ 是奇函数。几何解释:

图图

\(\mathbf{Problem\ 7}\) 证明:设 \([m, M] = f[a, b]\),由于 \(f(a) = f(b) = 0\),因此 \(M \ge 0, m \le 0\)

​ 若 \(M = 0\)\(f(x) \le 0\),因此:

\[f'_+(a) = \lim_{h \rightarrow 0^+} \frac{f(a + h) - f(a)}h \le 0\\ f'_-(b) = \lim_{h \rightarrow 0^-} \frac{f(b + h) - f(b)}h \ge 0\\ \]

​ 故 \(f'_+(a)f'_-(b) \le 0\),与题设矛盾,故 \(M > 0\),同理可证 \(m < 0\)。则存在 \(x_1, x_2 \in (a, b)\) 使得 \(f(x_1) = M > 0, f(x_2) = m < 0\),因此存在 \(\xi \in (x_1, x_2)\)\((x_2, x_1)\) 使得 \(f(\xi) = 0\)

\(\mathbf{Problem\ 9}\) 证明:如图。

图图

​ 考察双曲线 \(C : x^2 = 2py\),则焦点 \(F(0, \frac p2)\),在 \(C\) 上任取一点 \(A(x_0, \frac{x_0^2}{2p})\)\(C\)\(A\) 点处切线的倾斜角为 \(\alpha\)\(FA\)\(A\) 处法向方向夹角为 \(\gamma\)\(C\) 的对称轴方向与 \(A\) 处法向方向夹角为 \(\beta\),则 \(\beta = \alpha\),且 \(FA\) 倾斜角为 \(\frac \pi 2 + \beta + \gamma\)

​ 因此 \(\tan \beta = y'(x_0) = \frac{x_0}p\)\(\tan(\frac \pi 2 + \beta + \gamma) = k_{FA} = \frac{\frac{x_0^2}{2p} - \frac p2}{x_0}\),故:

\[\tan(\beta + \gamma) = \frac{x_0}{\frac p2 - \frac{x_0^2}{2p}},\qquad \tan 2\beta = \frac{\frac{2x_0}p}{1 - \frac{x_0^2}{p^2}} = \frac{x_0}{\frac p2 - \frac{x_0^2}{2p}} = \tan(\beta + \gamma) \]

​ 因此 \(\gamma = \beta\),证毕。

3.3 节

\(\mathbf{Problem\ 1}\) 解:

​ (2)

\[y' = 2xa^x + x^2a^x\ln a,\qquad y'' = 2a^x + 4xa^x\ln a + x^2a^x(\ln a)^2 \]

​ (4)

\[y' = -\frac 12 x^{-\frac 12}(a + x^\frac 12)^{-2},\qquad y'' = \frac 14 x^{-1}(a + x^\frac 12)^{-3}(ax^{-\frac 12} + 3) \]

​ (6)

\[y' = 2x\arctan x + 1,\qquad y'' = 2\arctan x + \frac{2x}{1 + x^2} \]

​ (8)

\[y' = \frac{1 + x(1 - x^2)^{-\frac 12} \arcsin x}{1 - x^2},\qquad y'' = \dfrac{\left(2x^2 + 1\right)\arcsin x + x\sqrt{1 - x^2}}{\sqrt{1-{x}^{2}}\left(1 - x^2\right)^2}+\dfrac{2x}{(1 - x^2)^2} \]

​ (10)

\[y' = \ln x + 1,\qquad y'' = \frac 1x \]

\(\mathbf{Problem\ 3}\) 解:

​ (1)

\[\begin{align*} y^{(10)} & = \sum_{k = 0}^{10} \binom{10}k (1 + x)^{(k)}\left((1 - x)^{-\frac 12}\right)^{(10 - k)} = \sum_{k = 0}^1 \binom{10}k (1 + x)^{(k)}\left((1 - x)^{-\frac 12}\right)^{(10 - k)}\\ & = (1 + x)\left((1 - x)^{-\frac 12}\right)^{(10)} + 10\left((1 - x)^{-\frac 12}\right)^{(9)}\\ & = \frac{654729075}{1024}(1 + x)(1 - x)^{-\frac{21}2} + \frac{172297125}{256}(1 - x)^{-\frac{19}2} \end{align*} \]

​ (2)

\[\begin{align*} y^{(8)} & = \sum_{k = 0}^8 \binom 8k \left(x^2\right)^{(k)}\left((1 - x)^{-1}\right)^{(8 - k)} = \sum_{k = 0}^2 \binom 8k \left(x^2\right)^{(k)}\left((1 - x)^{-1}\right)^{(8 - k)}\\ & = x^2\left((1 - x)^{-1}\right)^{(8)} + 16x\left((1 - x)^{-1}\right)^{(7)} + 56\left((1 - x)^{-1}\right)^{(6)}\\ & = 8! \cdot \left(x^2(1 - x)^{-9} + 2x(1 - x)^{-8} + (1 - x)^{-7}\right) \end{align*} \]

\(\mathbf{Problem\ 4}\)​ 解:

\[(\cos x)^{(1)} = -\sin x,\quad (\cos x)^{(2)} = -\cos x,\quad (\cos x)^{(3)} = \sin x,\quad (\cos x)^{(4)} = \cos x\\ (\sin x)^{(1)} = \cos x,\quad (\sin x)^{(2)} = -\sin x,\quad (\sin x)^{(3)} = -\cos x,\quad (\sin x)^{(4)} = \sin x\\ \]

​ 因此可得:

\[(\cos x)^{(k + 4)} = (\cos x)^{(k)},\quad (\sin x)^{(k + 4)} = (\sin x)^{(k)} \]

​ 取整数 \(p, r\) 使得 \(n = 4p + r~(r < 4)\),则有:

\[\begin{align*} (e^x \cos x)^{(n)} & = \sum_{k = 0}^n \binom nk (\cos x)^{(k)} (e^x)^{(n - k)} = e^x \sum_{k = 0}^n \binom nk (\cos x)^{(k)}\\ & = e^x \left(\sum_{k = 4p}^n \binom nk (\cos x)^{(k)} + \sum_{k = 0}^{4p - 1} \binom nk (\cos x)^{(k)}\right)\\ & = e^x \left(\sum_{k = 4p}^{4p + r} \binom nk (\cos x)^{(k)} + \sum_{i = 0}^{p - 1} \left(\binom n{4i} \cos x - \binom n{4i + 1} \sin x - \binom n{4i + 2} \cos x + \binom n{4i + 3} \sin x\right)\right)\\ & = e^x \left(\sum_{k = 4p}^{4p + r} \binom nk (\cos x)^{(k)} + \cos x\sum_{i = 0}^{p - 1} \left(\binom n{4i} - \binom n{4i + 2}\right) - \sin x \sum_{i = 0}^{p - 1} \left(\binom n{4i + 1} - \binom n{4i + 3}\right)\right)\\ (e^x \sin x)^{(n)} & = \sum_{k = 0}^n \binom nk (\sin x)^{(k)} (e^x)^{(n - k)} = e^x \sum_{k = 0}^n \binom nk (\sin x)^{(k)}\\ & = e^x \left(\sum_{k = 4p}^n \binom nk (\sin x)^{(k)} + \sum_{k = 0}^{4p - 1} \binom nk (\sin x)^{(k)}\right)\\ & = e^x \left(\sum_{k = 4p}^{4p + r} \binom nk (\sin x)^{(k)} + \sum_{i = 0}^{p - 1} \left(\binom n{4i} \sin x + \binom n{4i + 1} \cos x - \binom n{4i + 2} \sin x - \binom n{4i + 3} \cos x\right)\right)\\ & = e^x \left(\sum_{k = 4p}^{4p + r} \binom nk (\sin x)^{(k)} + \sin x\sum_{i = 0}^{p - 1} \left(\binom n{4i} - \binom n{4i + 2}\right) + \cos x \sum_{i = 0}^{p - 1} \left(\binom n{4i + 1} - \binom n{4i + 3}\right)\right)\\ \end{align*} \]

​ 注意到:

\[(1 + x)^n = \sum_{k = 0}^n \binom nk x^k \]

​ 代入 \(x = i, n = 4p - 1, p \in \mathbb N^*\) 即得:

\[\begin{align*} \mathbf{LHS} & = (1 + i)^n = \left(\sqrt 2 e^{\frac {\pi i}4}\right)^{4p - 1} = 2^{2p - \frac 12} e^{(p - \frac 14)\pi i}\\ & = (-1)^p \cdot 2^{2p - \frac 12} \cdot e^{-\frac{\pi i}4} = (-1)^p \cdot 2^{2p - \frac 12} \cdot 2^{-\frac 12} (1 - i) = (-1)^p \cdot 2^{2p - 1} \cdot (1 - i)\\ \mathbf{RHS} & = \sum_{j = 0}^{p - 1} \left(\binom n{4j} + i \binom n{4j + 1} - \binom n{4j + 2} - i \binom n{4j + 3}\right)\\ & = \sum_{j = 0}^{p - 1} \left(\binom n{4j} - \binom n{4j + 2}\right) + i \sum_{j = 0}^{p - 1} \left(\binom n{4j + 1} - \binom n{4j + 3}\right) \end{align*} \]

​ 因此可得:

\[\sum_{j = 0}^{p - 1} \left(\binom n{4j} - \binom n{4j + 2}\right) = (-1)^p \cdot 2^{2p - 1}\\ \sum_{j = 0}^{p - 1} \left(\binom n{4j + 1} - \binom n{4j + 3}\right) = (-1)^{p + 1} \cdot 2^{2p - 1}\\ \]

​ 将上述结果代回原式,可得:

\[(e^x \cos x)^{(4p - 1)} = (-1)^p \cdot 2^{2p - 1} (\sin x + \cos x)e^x\\ (e^x \sin x)^{(4p - 1)} = (-1)^p \cdot 2^{2p - 1} (\sin x - \cos x)e^x\\ \]

​ 因此:

\[\begin{align*} (e^x \cos x)^{(4p)} & = (-1)^p \cdot 2^{2p} \cos x \cdot e^x\\ (e^x \cos x)^{(4p + 1)} & = (-1)^p \cdot 2^{2p}(\cos x - \sin x)e^x\\ (e^x \cos x)^{(4p + 2)} & = (-1)^{p + 1} \cdot 2^{2p + 1} \sin x \cdot e^x\\ (e^x \cos x)^{(4p + 3)} & = (-1)^{p + 1} \cdot 2^{2p + 1}(\sin x + \cos x)e^x\\ (e^x \sin x)^{(4p)} & = (-1)^p \cdot 2^{2p} \sin x \cdot e^x\\ (e^x \sin x)^{(4p + 1)} & = (-1)^p \cdot 2^{2p}(\cos x + \sin x)e^x\\ (e^x \sin x)^{(4p + 2)} & = (-1)^p \cdot 2^{2p + 1} \cos x \cdot e^x\\ (e^x \cos x)^{(4p + 3)} & = (-1)^{p + 1} \cdot 2^{2p + 1}(\sin x - \cos x)e^x\\ \end{align*} \]

\(\mathbf{Problem\ 5}\) 解:由 \(g\)\(\mathbb R\) 上有二阶导函数可知:

​ (i)\(g\)\(\mathbb R\) 上连续,则 \(f(x_0) = \lim_{h \rightarrow 0^+} g(x_0 + h) = \lim_{h \rightarrow 0^+} ah^2 + bh + c = c\)\(c = f(x_0)\)

​ (ii)\(g'\)\(\mathbb R\) 上连续,则 \(f'_-(x_0) = g'_+(x_0) = \lim_{h \rightarrow 0^+} \frac{ah^2 + bh}h = b\)\(b = f'_-(x_0)\)

​ (iii)\(g'\)\(x_0\) 处可导,则 \(f''_-(x_0) = g''_+(x_0) = 2a\)\(a = \frac 12 f''_-(x_0)\)

3.4 节

\(\mathbf{Problem\ 2}\) 证明:构造 \([a, b]\) 上的函数 \(\tilde f\) 满足:

\[\tilde f(x) = \begin{cases} f(x), & x \in (a, b)\\ f(a+), & x \in \{a, b\} \end{cases} \]

​ 由于 \(f\)\((a, b)\) 可导且 \(f(a+) = f(b-)\) 所以 \(\tilde f\)\([a, b]\) 上连续且在 \((a, b)\) 上可导,因此 \(\exists \xi \in (a, b), \tilde f'(\xi) = f'(\xi) = 0\)

\(\mathbf{Problem\ 3}\) 证明:

​ (1)\((\sin x)' = \cos x\),因此 \(\forall x < y, \exists \xi \in (x, y), \cos \xi = \frac{\sin x - \sin y}{x - y}\),故:

\[\left|\frac{\sin x - \sin y}{x - y}\right| = |\cos \xi| \le 1 \Rightarrow |\sin x - \sin y| \le |x - y| \]

​ (3)\((\ln x)' = \frac 1x\),因此 \(\forall 0 < b < a, \exists \xi \in (b, a), \frac 1{\xi} = \frac{\ln a - \ln b}{a - b} = \frac{\ln(a/b)}{a - b}\),又有 \(\frac 1a < \frac 1\xi < \frac 1b\),则:

\[\frac{a - b}a < \ln \frac ab < \frac{a - b}b \]

\(\mathbf{Problem\ 4}\) 证明:构造 \(h(x) = f(x) - p(x)\),则 \(h(x_i) = 0~(i = 0, 1, 2, \cdots, n)\)。因此 \(\forall i \in \{0, 1, 2, \cdots, n - 1\}, \exists y_i \in (x_i, x_{i + 1}), h^{(1)}(y_i) = 0\)\(h^{(1)}\)\(n\) 个零点。依次类推可得 \(h^{(n)}\) 有一个零点,不妨设其为 \(\xi\),则 \(f^{(n)}(\xi) = p^{(n)}(\xi)\)

​ 又有 \(p(x) = \sum_{i = 0}^n a_i x^{n - i}\),则 \(p^{(n)}(x) = n!~a_0\),因此 \(f^{(n)}(\xi) = n!~a_0\)\(a_0 = \frac{f^{(n)}(\xi)}{n!}\)

\(\mathbf{Problem\ 5}\) 证明:构造 \(f(x) = \sum_{i = 0}^n \frac{a_i}{n + 1 - i} x^{n + 1 - i}\),则 \(f(0) = f(1) = 0\)。且 \(f'(x) = \sum_{i = 0}^n a_i x^{n - i}\),因此 \(\exists \xi \in (0, 1), f'(\xi) = 0\)\(\xi\) 即为 \(a_0 x^n + a_1 x^{n - 1} + \cdots + a_{n - 1} x + a_n\) 的零点。

\(\mathbf{Problem\ 6}\) 证明:假设 \(\exists \delta > 0, \exists A > 0, \forall x \in (0, \delta), f'(x) > -A\)。构造 \(x_n = \frac 1n\),取 \(x_0 = \frac \delta 2\),则 \(\forall n, \exists \xi_n \in (x_n, x_0), f'(\xi_n) = \frac{f(x_n) - f(x_0)}{x_n - x_0} > -A\),因此 \(\lim_{n \rightarrow \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = -\infty \ge -A\),矛盾。故 \(f'\)\(x = 0\) 的右旁无下界。

\(\mathbf{Problem\ 8}\) 证明:构造 \(g(x) = xf(\frac 1x)\),则:

\[\frac{af(b) - bf(a)}{a - b} = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac 1b - \frac 1a} = \frac{g(\frac 1b) - g(\frac 1a)}{\frac 1b - \frac 1a} \]

​ 因此:

\[\exists \frac 1\xi \in \left(\frac 1b, \frac 1a\right), \frac{af(b) - bf(a)}{a - b} = g'(\frac 1\xi) = f(\xi) - \xi f'(\xi) \]

\(\mathbf{Problem\ 9}\) 证明:在 \((a, b)\) 中选取一数 \(\phi\),使得 \(\frac{f(b) - f(a)}{b - a} \neq \frac{f(b) - f(\phi)}{b - \phi}\)。记 \(k = \frac{f(b) - f(a)}{b - a}\),假设:

\[k < \frac{f(b) - f(\phi)}{b - \phi},\qquad k < \frac{f(\phi) - f(a)}{\phi - a} \]

​ 则 \(f(b) - f(a) = f(b) - f(\phi) + f(\phi) - f(a) > k(b - \phi) + k(\phi - a) = k(b - a)\),矛盾。同理可证 \(k\) 不可能同时大于 \(\frac{f(b) - f(\phi)}{b - \phi}\)\(\frac{f(\phi) - f(a)}{\phi - a}\),并且 \(k \neq \frac{f(\phi) - f(a)}{\phi - a}\)。因此 \(k\) 一定在这两数之间,不妨设 \(\frac{f(\phi) - f(a)}{\phi - a} < k < \frac{f(b) - f(\phi)}{b - \phi}\),那么如果 \(\left|\frac{f(b) - f(\phi)}{b - \phi}\right| \le |k|\),则 \(k < 0\),就有:

\[\left|\frac{f(\phi) - f(a)}{\phi - a}\right| = -\frac{f(\phi) - f(a)}{\phi - a} > -k = |k| \]

​ 因此 \(\left|\frac{f(\phi) - f(a)}{\phi - a}\right|\)\(\left|\frac{f(b) - f(\phi)}{b - \phi}\right|\) 中一定有一个数大于 \(|k|\),不妨设其为 \(\left|\frac{f(b) - f(\phi)}{b - \phi}\right|\)。那么 \(\exists \xi \in (\phi, b), f'(\xi) = \frac{f(b) - f(\phi)}{b - \phi}\),此时 \(|f'(\xi)| > |k|\)

\(\mathbf{Problem\ 12}\) 证明:\(f\)\([-\frac r2, \frac r2]\) 上可求 \(n\) 阶导,因此 \(f^{(n)}\)\([-\frac r2, \frac r2]\) 上无第一类间断点,然而 \(\lim_{x \rightarrow 0} f^{(n)}(x) = l\),因此 \(x = 0\) 不是 \(f^{(n)}\) 的间断点,即 \(f^{(n)}(0) = l\)

3.5 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)\(f(x)\)\((-\frac \pi 2, \frac \pi 2)\) 上连续,且:

\[f'(x) = \frac 1{\cos^2 x} \ge 0 \]

​ 因此 \(f\)\((-\frac \pi 2, \frac \pi 2)\) 上单调递增。

​ (2)\(f(x)\)\(\mathbb R\) 上连续,且:

\[f'(x) = \frac 1{1 + x^2} - 1 = -\frac {x^2}{1 + x^2} \le 0 \]

​ 因此 \(f\)\(\mathbb R\) 上单调递减。

\(\mathbf{Problem\ 2}\) 证明:

​ (2)令 \(f(x) = x - \frac{x^2}2 - \ln(1 + x), g(x) = x - \ln(1 + x)\),则:

\[f(0) = g(0) = 0,\quad f'(x) = 1 - x - \frac 1{1 + x} = -\frac{x^2}{1 + x} < 0,\quad g'(x) = \frac x{1 + x} > 0,\quad (x > 0) \]

​ 因此对于 \(x > 0\)\(f(x) < f(0) = 0, g(x) > g(0) = 0\),即 \(x - \frac{x^2}2 < \ln(1 + x) < x\)

​ (3)令 \(f(x) = x - \frac{x^3}6 - \sin x, g(x) = x - \sin x\),则:

\[f(0) = g(0) = 0,\quad f'(x) = 1 - \frac{x^2}2 - \cos x,\quad g'(x) = 1 - \cos x \ge 0 \]

​ 其中 \(g'(x) = 0\) 当且仅当 \(x = 2k\pi, k \in \mathbb N\),所以 \(g\)\(x > 0\) 时单调递增,因而 \(g(x) > g(0) = 0\)\(\sin x < x\)

​ 又因为:

\[f'(0) = 0,\quad f''(x) = -x + \sin x < 0,\quad (x > 0) \]

​ 所以对 \(x > 0\)\(f'(x) < f'(0) = 0\),所以此时 \(f\) 单调递减,因此 \(f(x) < f(0) = 0\)\(x - \frac{x^3}6 < \sin x\)。综上 \(x - \frac{x^3}6 < \sin x < x\)\(x > 0\) 时成立。

\(\mathbf{Problem\ 3}\) 证明:

​ (2)令 \(f(x) = \left(t^x + 1\right)^\frac 1x\),其中 \(t, x > 0\),则:

\[f(x) = e^\frac{\ln(1 + t^x)}x,\qquad f'(x) = \frac{t^x \ln t^x - (1 + t^x)\ln(1 + t^x)}{x^2 (1 + t^x)} e^\frac{\ln(1 + t^x)}x \]

​ 又有 \(t^x > 0\),令 \(g(x) = x\ln x\),可得 \(g'(x) = 1 + \ln x\),因此 \(g\)\(x \ge 1\) 处单调递增。若 \(t^x \in (0, 1)\),则 \(g(t^x) < 0 < g(1 + t^x)\);若 \(t^x \in [1, +\infty)\),则 \(g(1 + t^x) > g(t^x)\)。综上 \(g(t^x) < g(1 + t^x)\)。所以

\[f'(x) = \frac{g(t^x) - g(1 + t^x)}{x^2 (1 + t^x)} e^\frac{\ln(1 + t^x)}x < 0 \]

​ 因此 \(f\)\(x > 0\) 时单调递减。现令 \(t = \frac xy\),因为 \(\beta > \alpha > 0\),所以:

\[f(\alpha) > f(\beta) \Rightarrow \left(\left(\frac xy\right)^\alpha + 1\right)^\frac 1\alpha > \left(\left(\frac xy\right)^\beta + 1\right)^\frac 1\beta \Rightarrow \left(x^\alpha + y^\alpha\right)^\frac 1\alpha > \left(x^\beta + y^\beta\right)^\frac 1\beta \]

​ (3)令 \(f(x) = (1 + x)^\alpha - 1 - \alpha x\),则:

\[f(0) = 0,\qquad f'(x) = \alpha\left((1 + x)^{\alpha - 1} - 1\right) \]

​ 当 \(\alpha \in (0, 1]\) 时:\(\alpha - 1 \le 0\)\((1 + x)^{\alpha - 1}\)\(x \in (-1, 0)\)\(\ge 1\);在 \(x \in [0, +\infty)\)\(\le 1\)。所以在 \(x \in (-1, 0)\)\(f'(x) \ge 0\);在 \(x \in [0, +\infty)\)\(f'(x) \le 0\)。所以对于 \(x > -1\)\(f(x) \le f(0) = 0\)\((1 + x)^\alpha \le 1 + \alpha x\)

​ 当 \(\alpha \in [1, +\infty)\) 时:\(\alpha - 1 \ge 0\)\((1 + x)^{\alpha - 1}\)\(x \in (-1, 0)\)\(\le 1\);在 \(x \in [0, +\infty)\)\(\ge 1\)。所以在 \(x \in (-1, 0)\)\(f'(x) \le 0\);在 \(x \in [0, +\infty)\)\(f'(x) \ge 0\)。所以对于 \(x > -1\)\(f(x) \ge f(0) = 0\)\((1 + x)^\alpha \ge 1 + \alpha x\)

​ 当 \(\alpha \in (-\infty, 0)\) 时:\(\alpha - 1 < 0\)\((1 + x)^{\alpha - 1}\)\(x \in (-1, 0)\)\(\ge 1\);在 \(x \in [0, +\infty)\)\(\le 1\)。所以在 \(x \in (-1, 0)\)\(f'(x) \le 0\);在 \(x \in [0, +\infty)\)\(f'(x) \ge 0\)。所以对于 \(x > -1\)\(f(x) \ge f(0) = 0\)\((1 + x)^\alpha \ge 1 + \alpha x\)

\(\mathbf{Problem\ 4}\) 证明:

\[F'(x) = x^2 f'(x) + 2xf(x),\qquad F''(x) = x^2 f''(x) + 4xf'(x) + 2f(x) \]

​ 因此 \(F'(0) = F''(0) = 0\)。又因为 \(F(0) = F(1) = 0\),所以 \(\exists \eta \in (0, 1), F'(\eta) = 0\)。又因为 \(F'(0) = F'(\eta) = 0\),所以 \(\exists \gamma \in (0, \eta), F''(\gamma) = 0\)。又因为 \(F''(0) = F''(\gamma) = 0\),所以 \(\exists \xi \in (0, \gamma), F'''(\xi) = 0\)

\(\mathbf{Problem\ 6}\) 证明:因 \(f''\) 存在,所以 \(f\) 连续。若 \(f\) 有最大值 \(M\),则 \(\exists x_0 \in \mathbb R\) 使得 \(f(x_0) = M\)。考虑任取 \(\delta > 0\),则 \(f(x_0 + \delta) \le M\),所以 \(\exists \eta \in (x_0, x_0 + \delta), f'(\eta) = \frac{f(x_0 + \delta) - f(x_0)}\delta \le 0\)。又因为 \(f(x_0)\)\(f\) 最大值,所以 \(f'(x_0) = 0\),因此 \(\exists \xi \in (x_0, \eta), f''(\eta) = \frac{f'(\eta) - f'(x_0)}{\eta - x_0} \le 0\)。又因为 \(f'' \ge 0\),所以 \(f''(\eta) = 0\)\(f(x_0 + \delta) = f(x_0)\)。同理可得上述结论对 \(\delta < 0\) 也成立,所以此时 \(f\) 为常值函数。

​ 若 \(f\) 无最大值,令 \(M = \sup f\),则 \(\forall n, \exists x_n, f(x_n) > M - \frac 1n\)。考虑取 \(\{x_n\}\) 的单调子列 \(\{x_{k_n}\}\),则 \(f(x_{k_n}) > M - \frac 1{k_n} \ge M - \frac 1n\)。令 \(x_{k_n} \rightarrow x^*~(n \rightarrow \infty)\),因为 \(f(x_{k_n}) \to M~(n \to \infty)\)\(f\) 无最大值,所以 \(x^* \in \{+\infty, -\infty\}\)。不妨设 \(x^* = +\infty\),则 \(f(+\infty) = M\)。任取 \(x_0 \in \mathbb R\),令:

\[a_n = f(x_0 + n) - f(x_0 + n - 1),\qquad s_n = \sum_{i = 1}^n a_i = f(x_0 + n) - f(x_0) \]

​ 则 \(a_n \to 0, s_n \to M - f(x_0)~(n \to \infty)\)。因为 \(a_n = \frac{f(x_0 + n) - f(x_0 + n - 1)}1\),所以 \(\exists \eta_n \in (x_0 + n - 1, x_0 + n), a_n = f'(\eta_n)\)。又因为 \(\eta_n < \eta_{n + 1}\)\(f'' \ge 0\),所以 \(\{f'(\eta_n)\}\) 为单调不降序列,即 \(a_n \le a_{n + 1}\),所以 \(a_n \le 0\),那么 \(s_n = \sum_{i = 1}^n a_i \le 0\)。又因为 \(s_n \to M - f(x_0)~(n \to \infty)\),所以 \(M - f(x_0) \le 0\),然而 \(M = \sup f\),所以 \(M = f(x_0)\),这与 \(f\) 无最大值矛盾,故 \(f\) 必有最大值。

​ 综上,\(f\) 为常值函数。

\(\mathbf{Problem\ 8}\) 证明:令 \(f(x) = x - \frac 1x - 2\ln x\),则:

\[f(1) = 0,\qquad f'(x) = 1 - \frac 2x + \frac 1{x^2} = \frac{(x - 1)^2}{x^2} > 0~(x > 0, x \neq 1) \]

​ 所以当 \(x \in (0, 1)\)\(f(x) < f(1) = 0\)\(x < 2\ln x + \frac 1x\);当 \(x \in (1, +\infty)\)\(f(x) > f(1) = 0\)\(x > 2\ln x + \frac 1x\)。因此当 \(x \in (0, 1)\)\(1 - x > 0, e^x < e^{2\ln x + \frac 1x} = x^2 e^\frac 1x\) 所以 \((1 - x)(x^2 e^\frac 1x - e^x) > 0\);当 \(x \in (1, +\infty)\)\(1 - x < 0, e^x > x^2 e^\frac 1x\) 所以 \((1 - x)(x^2 e^\frac 1x - e^x) > 0\)。综上 \((1 - x)(x^2 e^\frac 1x - e^x) > 0\)

\(\mathbf{Problem\ 9}\) 解:

​ (1)

\[f'(x) = 4x^3 - 4x = 4x(x^2 - 1) \]

​ 因此 \(f\)\([-2, 2]\) 共有三个驻点:\(-1, 0, 1\)。又因为:

\[f(-2) = 13,\quad f(-1) = 4,\quad f(0) = 5,\quad f(1) = 4,\quad f(2) = 13 \]

​ 所以 \(f\) 最大值为 \(13\),最小值为 \(4\)

​ (3)

\[f'(x) = 1 + \ln x \]

​ 因此 \(f\)\((0, \frac 1e)\) 单调递减,在 \((\frac 1e, +\infty)\) 单调递增。则 \(f\) 无最大值,最小值 \(f(\frac 1e) = -\frac 1e\)

​ (5)

\[f(x) = \begin{cases} -x^2 + 3x - 2, & x \in (1, 2)\\ x^2 - 3x + 2, & x \in [-10, 1] \cup [2, 10] \end{cases} \]

​ 则当 \(x \in (1, 2)\) 时,\(f'(x) = -2x + 3\),其中有一个驻点 \(\frac 32\)。当 \(x \in [-10, 1] \cup [2, 10]\) 时,\(f'(x) = 2x - 3\),其中无驻点。又因为:

\[f(-10) = 132 ,\quad f(1) = 0 ,\quad f(\frac 32) = \frac 14 ,\quad f(2) = 0 ,\quad f(10) = 72 \]

​ 因此 \(f\) 的最大值为 \(132\),最小值为 \(0\)

\(\mathbf{Problem\ 11}\) 解:设该矩形一顶点坐标为 \((x_0, y_0)\),则另外三顶点坐标分别为 \((x_0, -y_0), (-x_0, y_0), (-x_0, -y_0)\),则有:

\[\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1,\qquad S = 4x_0y_0 \]

​ 因此:

\[S^2 = \frac{16b^2}{a^2}x_0^2(a^2 - x_0^2) \]

​ 令 \(u(t) = \frac{16b^2}{a^2} t(a^2 - t)\),那么:

\[u'(t) = \frac{16b^2}{a^2}(a^2 - 2t) \]

​ 因此 \(u\)\(t < \frac{a^2}2\)\(u\) 单调递增,在 \(t > \frac{a^2}2\)\(u\) 单调递减,则 \(u(\frac{a^2}2) = 4a^2b^2\)\(u\) 的最大值。又因为 \(x_0^2 = \frac{a^2}2\)\([-a, a]\) 内有解,所以 \(S^2 = u(x_0^2)\) 的最大值为 \(4a^2b^2\),即 \(S_\max = 2ab\)\(x_0 = \pm \frac{\sqrt 2}2 a\) 时取到。

\(\mathbf{Problem\ 16}\) 解:即:

\[\forall x > 0, x\ln a \ge a\ln x \Rightarrow \frac{\ln a}a \ge \left(\frac{\ln x}x\right)_\max \]

​ 令 \(f(x) = \frac{\ln x}x\),则:

\[f'(x) = \frac{1 - \ln x}{x^2} \]

​ 所以 \(f\)\((0, e)\) 单调递增,在 \((e, +\infty)\) 单调递减,因此 \(f(e)\)\(f\) 的最大值。所以若 \(f(a) \ge f(x)\),则 \(a = e\)

\(\mathbf{Problem\ 17}\) 证明:由题 \(f\)\([a, b]\) 上为凸函数,所以:

\[f(x) = f(\frac{b - x}{b - a}a + \frac{x - a}{b - a}b) \le \frac{b - x}{b - a}f(a) + \frac{x - a}{b - a}f(b) \]

​ 又因为 \(b - a \ge 0\) 所以:

\[(b - a)f(x) \le (b - x)f(a) + (x - a)f(a) \]

\(\mathbf{Problem\ 18}\) 解:

​ (1)

\[f''(x) = \mu(\mu - 1)x^{\mu - 2} \ge 0 \]

​ 因此 \(f\)\([0, +\infty)\) 是凸函数。

​ (3)

\[f''(x) = \frac 1{x^2} > 0 \]

​ 因此 \(f\)\((0, +\infty)\) 是凸函数。

​ (5)

\[f''(x) = \sin x \ge 0 \]

​ 因此 \(f\)\([0, \pi)\) 是凸函数。

\(\mathbf{Problem\ 19}\) 证明:

​ (3)令 \(f(x) = -\ln x\),已知这是一个凸函数,所以:

\[f(\sum_{i = 1}^n \lambda_i x_i) \le \sum_{i = 1}^n \lambda_i f(x_i) \Rightarrow -\ln(\sum_{i = 1}^n \lambda_i x_i) \le -\sum_{i = 1}^n \lambda_i \ln(x_i) \Rightarrow \ln(\sum_{i = 1}^n \lambda_i x_i) \ge \sum_{i = 1}^n \lambda_i \ln(x_i),\qquad x_i > 0 \]

​ 因此对 \(x_i > 0\) 有:

\[\sum_{i = 1}^n \lambda_i x_i = e^{\ln(\sum_{i = 1}^n \lambda_i x_i)} \ge e^{\sum_{i = 1}^n \lambda_i \ln(x_i)} = \prod_{i = 1}^n x_i^{\lambda_i} \]

​ 若存在 \(x_i = 0\) 则:

\[\sum_{i = 1}^n \lambda_i x_i \ge 0 = \prod_{i = 1}^n x_i^{\lambda_i} \]

​ 综上:若对 \(i = 1, 2, 3, \cdots, n\)\(x_i \ge 0\) 则:

\[\sum_{i = 1}^n \lambda_i x_i \ge \prod_{i = 1}^n x_i^{\lambda_i} \]

\(\mathbf{Problem\ 21}\) 证明:任取 \(x \in (a, c), y \in (c, b)\),则:

\[\frac{f(x) - f(c)}{x - c} \ge \frac{f(a) - f(c)}{a - c} = 0,\quad \frac{f(y) - f(c)}{y - c} \le \frac{f(b) - f(c)}{b - c} = 0\\ 0 \le \frac{f(x) - f(c)}{x - c} \le \frac{f(x) - f(y)}{x - y} \le \frac{f(y) - f(c)}{y - c} \le 0 \Rightarrow f(x) = f(y) = f(c) \]

​ 因此 \(f\) 为常值函数。

\(\mathbf{Problem\ 23}\) 证明:因为 \(\exists c \in (a, b), f(c) > 0\),所以:

\[\exists \eta \in (a, c), f'(\eta) = \frac{f(c) - f(a)}{c - a} > 0\\ \exists \gamma \in (c, b), f'(\gamma) = \frac{f(c) - f(b)}{c - b} < 0\\ \exists \xi \in (\eta, \gamma), f''(\xi) = \frac{f'(\eta) - f'(\gamma)}{\eta - \gamma} < 0 \]

3.6 节

\(\mathbf{Problem\ 1}\) 解:

​ (1)

\[\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx} = \lim_{x \to 0} \frac{ae^{ax} - be^{bx}}{a\cos ax - b\cos bx} = \frac{a - b}{a - b} = 1 \]

​ (4)

\[\lim_{x \to 0} \frac{x(e^x + 1) - 2(e^x - 1)}{x^3} = \lim_{x \to 0} \frac{(x - 1)e^x + 1}{3x^2} = \lim_{x \to 0} \frac{xe^x}{6x} = \frac 16 \]

​ (7)

\[\lim_{x \to 0^+} x\ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = 0\\ \lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x\ln x} = e^0 = 1 \]

​ (10)

\[\lim_{x \to 1}\left(\frac 1{\ln x} - \frac 1{x - 1}\right) = \lim_{x \to 1} \frac{x - \ln x - 1}{(x - 1)\ln x} = \lim_{x \to 1} \frac{1 - \frac 1x}{\ln x + 1 - \frac 1x} = \lim_{x \to 1} \frac{x - 1}{x\ln x + x - 1} = \lim_{x \to 1} \frac 1{2 + \ln x} = \frac 12 \]

​ (13)

\[\lim_{x \to 0} \frac 1x\left(\frac 2\pi \arccos x - 1\right) = \lim_{x \to 0} \frac{-\frac 2\pi \frac 1{\sqrt{1 - x^2}}}1 = -\frac 2\pi \]

​ 因此原极限为 \(e^{-\frac 2\pi}\)

\(\mathbf{Problem\ 2}\) 证明:

\[\lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f(x + h) - f(x - h)}{2h} = f''(x) \]

​ 因此若 \(f\) 为凸函数,则 \(\frac 12f(x + h) + \frac 12f(x - h) \ge f(\frac{x + h}2 + \frac{x - h}2) = f(x)\),因此:

\[f(x + h) + f(x - h) - 2f(x) \ge 0,\qquad f''(x) \ge 0 \]

\(\mathbf{Problem\ 4}\) 证明:

\[l = \lim_{x \to +\infty}(f(x) + x\ln xf'(x)) = \lim_{x \to +\infty} x(f(x)\ln x)' = \lim_{x \to +\infty} \frac{(f(x)\ln x)'}{(\ln x)'} = \lim_{x \to +\infty} f(x) \]

4.1 节

\(\mathbf{Problem\ 1.}\) 解:

​ (1)

\[\mathrm{d}y = -\frac{\mathrm{d}x}{x^2} \]

​ (3)

\[\mathrm{d}y = x\sin x~\mathrm{d}x \]

\(\mathbf{Problem\ 2.}\) 解:

​ (2)\(\arctan x + C\)

​ (4)\(x^2 + x + C\)

​ (6)令 \(x = \tan u\),则:

\[\mathrm{d}x = \frac{\mathrm{d}u}{\cos^2 u},\qquad \sqrt{1 + x^2} = \frac 1{\cos u}\\ \frac{\mathrm{d}x}{\sqrt{1 + x^2}} = \frac{\mathrm{d}u}{\cos u} = \frac{\mathrm{d}(\sin u)}{\cos^2 u} = \frac{\mathrm{d}(\sin u)}{1 - \sin^2 u} \]

​ 再令 \(v = \sin u\),则:

\[\frac{\mathrm{d}(\sin u)}{1 - \sin^2 u} = \frac{\mathrm{d}v}{1 - v^2} = \frac 12\left(\frac 1{1 - v} + \frac 1{1 + v}\right)\mathrm{d}v = \frac 12\left(\mathrm{d}(\ln(1 + v)) - \mathrm{d}(\ln(1 - v))\right) = \mathrm{d}\left(\frac 12\ln\frac{1 + v}{1 - v}\right) \]

​ 又有:

\[x = \tan u = \frac{\sin u}{\cos u} = \frac{v}{\sqrt{1 - v^2}} \Rightarrow v^2 = x^2(1 - v^2) \Rightarrow v = \frac x{\sqrt{1 + x^2}} \]

​ 将其代入上式即得:

\[\frac{\mathrm{d}x}{\sqrt{1 + x^2}} = \mathrm{d}\left(\frac 12\ln\frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2} - x} + C\right) \]

​ (8)

\[\cos x\sin x\mathrm{d}x = \sin x~\mathrm{d}(\sin x) = \mathrm{d}\left(\frac 12\sin^2 x + C\right) \]

​ (10)

\[\frac{x~\mathrm{d}x}{\sqrt{x^2 + a^2}} = \frac{\mathrm{d}(x^2 + a^2)}{2\sqrt{x^2 + a^2}} = \mathrm{d}\left(\sqrt{x^2 + a^2} + C\right) \]

​ (12)

\[\sin^2 x~\mathrm{d}x = \frac{1 - \cos 2x}2~\mathrm{d}x = \frac 14(1 - \cos 2x)~\mathrm{d}(2x) = \frac 14~\mathrm{d}(2x - \sin 2x) = \mathrm{d}\left(\frac 12x - \frac 14\sin 2x + C\right) \]

\(\mathbf{Problem\ 3.}\) 解:

​ (1)

\[\mathrm{d}y = (u'vw + uv'w + uvw')~\mathrm{d}x = vw~\mathrm{d}u + uw~\mathrm{d}v + uv~\mathrm{d}w \]

​ (3)

\[\mathrm{d}y = -\frac 12(u^2 + v^2 + w^2)^{-\frac 32}(2uu' + 2vv' + 2ww')~\mathrm{d}x = -\frac {u~\mathrm{d}u + v~\mathrm{d}v + w~\mathrm{d}w}{(u^2 + v^2 + w^2)^\frac 32} \]

​ (5)

\[\mathrm{d}y = \frac 12~\mathrm{d}(\ln(u^2 + v^2 + w^2)) = \frac 12\frac{2uu' + 2vv' + 2ww'}{u^2 + v^2 + w^2}~\mathrm{d}x = \frac{u~\mathrm{d}u + v~\mathrm{d}v + w~\mathrm{d}w}{u^2 + v^2 + w^2} \]

\(\mathbf{Problem\ 4.}\) 解:

​ (1)

\[\mathrm{d}x = \mathrm{d}y + e^y~\mathrm{d}y = (1 + e^y)~\mathrm{d}y \]

​ 则 \(y' = \frac 1{1 + e^y}\)

​ (4)

\[\frac{\mathrm{d}x}{2\sqrt x} + \frac{\mathrm{d}y}{2\sqrt y} = 0 \Rightarrow \mathrm{d}y = -\frac{\sqrt y}{\sqrt x}~\mathrm{d}x \]

​ 代入 \(\sqrt x + \sqrt y = \sqrt a\),得:

\[\mathrm{d}y = \left(1 - \sqrt{\frac{a}{x}}\right)~\mathrm{d}x \]

​ 故 \(y' = 1 - \sqrt{\frac{a}{x}}\)

​ (5)令 \(t = \frac xy\),可得:

\[\frac{y^2}x = \sqrt{x^2 + y^2} \Rightarrow \mathrm{sgn}(y)\frac yx = \sqrt{\left(\frac xy\right)^2 + 1} \Rightarrow \frac{\mathrm{sgn}(y)}t = \sqrt{t^2 + 1} \]

​ 容易验证 \(y \neq 0\),令 \(u = t^2\),则:

\[\mathrm{sgn}(y)\frac 1t = \sqrt{t^2 + 1} \Rightarrow \frac 1u = u + 1 \Rightarrow u^2 + u - 1 = 0 \]

​ 解得:\(u_1 = \frac{-1 - \sqrt 5}2 < 0, u_2 = \frac{-1 + \sqrt 5}2 > 0\)。又有:

\[u = \frac xy \Rightarrow y = \frac xu \Rightarrow \mathrm{d}y = \frac{\mathrm{d}x}u \Rightarrow y' = \frac 1u \]

​ 所以当 \(y < 0\)\(y' = \frac 1{u_1}\);当 \(y > 0\)\(y' = \frac 1{u_2}\)

\(\mathbf{Problem\ 5.}\) 解:

​ (3)

\[\arctan'(x) = \frac 1{1 + x^2},\qquad \arctan'(1) = \frac 12 \]

​ 因此:

\[\arctan 1.05 = \arctan(1 + 0.05) \approx \arctan 1 + \arctan'(1) \cdot 0.05 \approx 0.8104 \]

4.2 节

\(\mathbf{Problem\ 1.}\) 解:

​ (1)

\[\cos x = 1 - \frac 12x^2 + \frac 1{24}x^4 + o(x^4),\qquad e^{-\frac{x^2}2} = 1 - \frac 12x^2 + \frac 18x^4 + o(x^4) \quad(x \to 0) \]

​ 则原式:

\[\lim_{x \to 0}\frac{\cos x - e^{-\frac{x^2}2}}{x^4} = \lim_{x \to 0}\frac{-\frac 1{12}x^4 + o(x^4)}{x^4} = -\frac 1{12} \]

​ (2)

\[e^{\alpha x} = 1 + \alpha x + o(x),\qquad e^{\beta x} = 1 + \beta x + o(x)\quad (x \to 0)\\ \sin \alpha x = \alpha x + o(x),\qquad \sin \beta x = \beta x + o(x)\quad (x \to 0) \]

​ 则原式:

\[\lim_{x \to 0}\frac{e^{\alpha x} - e^{\beta x}}{\sin \alpha x - \sin \beta x} = \lim_{x \to 0}\frac{(\alpha - \beta)x + o(x)}{(\alpha - \beta)x + o(x)} = \lim_{x \to 0}\frac{\alpha - \beta + \frac{o(x)}x}{\alpha - \beta + \frac{o(x)}x} = 1 \]

​ (3)

\[(u^2 - 2u + 2)e^u = (u^2 - 2u + 2)(1 + u + \frac 12u^2 + \frac 16u^3 + o(u^3)) = 2 + \frac 13u^3 + o(u^3)\quad (u \to 0)\\ \sqrt{u^6 + 1} = 1 + o(u^3)\quad (u \to 0) \]

​ 则:

\[\begin{align*} \lim_{x \to +\infty} \left(\left(x^3 - x^2 + \frac x2\right)e^\frac 1x - \sqrt{x^6 + 1}\right) & = \lim_{u \to 0^+} \left(\frac{(u^2 - 2u + 2)e^u}{2u^3} - \frac{\sqrt{u^6 + 1}}{|u|^3}\right)\\ & = \lim_{u \to 0^+} \left(\frac{(u^2 - 2u + 2)e^u - 2\sqrt{u^6 + 1}}{2u^3}\right)\\ & = \lim_{u \to 0^+} \left(\frac{\frac 13u^3 + o(u^3)}{2u^3}\right) = \frac 16\\ \lim_{x \to -\infty} \left(\left(x^3 - x^2 + \frac x2\right)e^\frac 1x - \sqrt{x^6 + 1}\right) & = \lim_{u \to 0^-} \left(\frac{(u^2 - 2u + 2)e^u}{2u^3} - \frac{\sqrt{u^6 + 1}}{|u|^3}\right)\\ & = \lim_{u \to 0^-} \left(\frac{(u^2 - 2u + 2)e^u + 2\sqrt{u^6 + 1}}{2u^3}\right)\\ & = \lim_{u \to 0^-} \left(\frac{4 + \frac 13u^3 + o(u^3)}{2u^3}\right) = -\infty \end{align*} \]

​ 因此原极限不存在。

​ (4)

\[a^x = 1 + x\ln a + \frac{(\ln a)^2}2 x^2 + o(x^2),\qquad a^{-x} = 1 - x\ln a + \frac{(\ln a)^2}2 x^2 + o(x^2)\quad (x \to 0) \]

​ 则原式:

\[\lim_{x \to 0}\frac{a^x + a^{-x} - 2}{x^2} = \lim_{x \to 0}\frac{(\ln a)^2 x^2 + o(x^2)}{x^2} = (\ln a)^2 \]

\(\mathbf{Problem\ 2.}\) 证明:当 \(n = 0\) 时:

\[f(x) = \sum_{k = 0}^0 a_k(x - x_0)^k + o(1) = a_0 + o(1)\quad (x \to x_0) \]

​ 则 \(\lim_{x \to x_0} f(x) = \lim_{x \to x_0} a_0 + o(1) \Rightarrow f(x_0) = a_0\),此时题中结论成立。

​ 若当 \(n = n_0 \ge 0\) 时结论仍成立,则当 \(n = n_0 + 1\) 时:

\[o((x - x_0)^n) = f(x) - \sum_{k = 0}^n a_k(x - x_0)^k \Rightarrow \lim_{x \to x_0}\frac{f(x) - \sum_{k = 0}^n a_k(x - x_0)^k}{(x - x_0)^n} = 0 \]

​ 由于 \(\lim_{x \to x_0} (x - x_0)^n = 0\),所以可对上面的极限使用洛必达法则,即得:

\[\lim_{x \to x_0}\frac{f'(x) - \sum_{k = 0}^{n - 1} (k + 1)a_{k + 1}(x - x_0)^k}{n(x - x_0)^{n - 1}} = 0 \Rightarrow f'(x) = \sum_{k = 0}^{n - 1} (k + 1)a_{k + 1}(x - x_0)^k + o((x - x_0)^{n - 1})\quad (x \to x_0) \]

​ 又因为 \(n - 1 = n_0\),所以:

\[(k + 1)a_{k + 1} = \frac{(f')^{(k)}(x_0)}{k!} = \frac{f^{(k + 1)}(x_0)}{k!} \Rightarrow a_{k + 1} = \frac{f^{(k + 1)}(x_0)}{(k + 1)!}\quad (k = 0, 1, \cdots, n - 1) \]

​ 即 \(a_k = \frac{f^{(k)}(x_0)}{k!}\quad (k = 1, 2, \cdots, n)\)。又因为:

\[\lim_{x \to x_0}\frac{f(x) - \sum_{k = 0}^n a_k(x - x_0)^k}{(x - x_0)^n} = 0 \Rightarrow \lim_{x \to x_0}f(x) - \sum_{k = 0}^n a_k(x - x_0)^k = f(x_0) - a_0 = 0 \Rightarrow f^{(0)}(x_0) = a_0 \]

​ 所以此时 \(a_k = \frac{f^{(k)}(x_0)}{k!}\quad (k = 0, 1, \cdots, n)\) 成立,归纳完毕。

\(\mathbf{Problem\ 3.}\) 解:当 \(\alpha = -1\) 时:

\[\ln\left(\prod_{i = 1}^n\left(1 + \frac in\right)\right)^\frac 1n = \frac 1n\sum_{i = 1}^n \ln\left(1 + \frac in\right) = \frac 1n\ln\prod_{i = 1}^n\frac{n + i}n = \frac 1n\ln\frac{(2n)!}{n^nn!} \]

​ 令 \(a_n = \ln\frac{(2n)!}{n^nn!}\),则由 Stolz 定理可得:

\[\lim_{n \to \infty} \frac 1n\ln\frac{(2n)!}{n^nn!} = \lim_{n \to \infty} \frac{a_n}{n} = \lim_{n \to \infty} (a_{n + 1} - a_n) = \lim_{n \to \infty} \ln\left(\frac{2(2n + 1)n^n}{(n + 1)^{n + 1}}\right) \]

​ 整理得:

\[\ln\left(\frac{2(2n + 1)n^n}{(n + 1)^{n + 1}}\right) = \ln\left(\frac{4 + \frac 2n}{1 + \frac 1n}\right) + \ln\left(\frac{n}{n + 1}\right)^n = \ln\left(\frac{4 + \frac 2n}{1 + \frac 1n}\right) - \ln\left(1 + \frac 1n\right)^n \]

​ 因此:

\[\lim_{n \to \infty} \ln\left(\frac{2(2n + 1)n^n}{(n + 1)^{n + 1}}\right) = \ln 4 - \ln e = -1 + \ln 4 \]

​ 故:

\[\lim_{n \to \infty}\left(\prod_{i = 1}^n\left(1 + \frac in\right)\right)^\frac 1n = e^{-1 + \ln 4} = \frac 4e \]

​ 当 \(\alpha > -1\) 时:

\[\ln\left(\prod_{i = 1}^n\left(1 + \frac i{n^{\alpha + 2}}\right)\right)^{n^\alpha} = n^\alpha \sum_{i = 1}^n\ln\left(1 + \frac i{n^{\alpha + 2}}\right) \]

​ 此时 \(\frac i{n^{\alpha + 2}} \le \frac 1{n^{\alpha + 1}}\),又因为 \(\alpha + 1 > 0\),所以当 \(n \to \infty\)\(\frac 1{n^{\alpha + 1}} \to 0\)\(\frac i{n^{\alpha + 2}} \to 0\)。因此:

\[\ln\left(1 + \frac i{n^{\alpha + 2}}\right) = \frac i{n^{\alpha + 2}} + o\left(\frac i{n^{\alpha + 2}}\right) = \frac i{n^{\alpha + 2}} + o\left(\frac 1{n^{\alpha + 1}}\right)\quad (n \to \infty) \]

​ 所以:

\[n^\alpha \sum_{i = 1}^n\ln\left(1 + \frac i{n^{\alpha + 2}}\right) = n^\alpha \left(\frac{n + 1}{2n^{\alpha + 1}} + o\left(\frac 1{n^{\alpha + 1}}\right)\right) = \frac{n + 1}{2n} + o\left(\frac 1n\right) = \frac 12 + o(1)\quad (n \to \infty) \]

​ 故:

\[\lim_{n \to \infty}\left(\prod_{i = 1}^n\left(1 + \frac i{n^{\alpha + 2}}\right)\right)^{n^\alpha} = \sqrt e \]

4.3 节

\(\mathbf{Problem\ 1.}\) 解:

\[f(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 \]

​ 所以:

\[f(-1) = 3,\quad f^{(1)}(-1) = -12,\quad f^{(2)}(-1) = 42,\quad f^{(3)}(-1) = -96,\quad f^{(4)}(-1) = 120 \]

​ 因此:

\[f(x) = 3 - 12(x + 1) + 21(x + 1)^2 - 16(x + 1)^3 + 5(x + 1)^4 \]

\(\mathbf{Problem\ 2.}\) 解:

​ (1)已知:

\[\frac 1u = 1 - (u - 1) + (u - 1)^2 - (u - 1)^3 + o((u - 1)^3) \]

​ 令 \(u = 1 - x + x^2\) 可得:

\[\begin{align*} \frac 1{1 - x + x^2} & = 1 - (x^2 - x) + (x^2 - x)^2 - (x^2 - x)^3 + o\left(x^3(x - 1)^3\right)\\ & = 1 + x - x^2 + x^2 - 2x^3 + x^4 - x^3(-1 + o(1)) + o\left(x^3(x - 1)^3\right)\\ & = 1 + x - x^3 + o(x^3) + o\left(x^3(x - 1)^3\right),\qquad (x \to 0) \end{align*} \]

​ 又因为 \((x - 1)^3 \to -1~(x \to 0)\),所以 \(o\left(x^3(x - 1)^3\right) = o(x^3)\),因此:

\[\frac 1{1 - x + x^2} = 1 + x - x^3 + o(x^3),\qquad (x \to 0) \]

​ 所以原式为:

\[f(x) = 1 + \frac{2x}{1 - x + x^2} = 1 + 2x\left(1 + x - x^3 + o(x^3)\right) = 1 + 2x + 2x^2 - 2x^4 + o(x^4),\qquad (x \to 0) \]

​ (3)已知:

\[\cos x = 1 - \frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6 + o(x^6),\qquad \ln(1 + x) = x - \frac 12x^2 + \frac 13x^3 + o(x^3)\qquad (x \to 0) \]

​ 所以:

\[\begin{align*} \ln\cos x & = \ln\left(1 - \frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6 + o(x^6)\right)\\ & = -\frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6 - \frac 12\left(- \frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6\right)^2 + \frac 13\left(- \frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6\right)^3 + o(x^6)\\ & = -\frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6 - \frac {x^4}2\left(- \frac 12 + \frac 1{24}x^2 - \frac 1{720}x^4\right)^2 + \frac {x^6}3\left(- \frac 12 + \frac 1{24}x^2 - \frac 1{720}x^4\right)^3 + o(x^6)\\ & = -\frac 12x^2 + \frac 1{24}x^4 - \frac 1{720}x^6 - \frac {x^4}2\left(\frac 14 - \frac 1{24}x^2 + o(x^2)\right) + \frac {x^6}3\left(- \frac 18 + o(1)\right) + o(x^6)\\ & = -\frac 12x^2 - \frac 1{12}x^4 - \frac 1{45}x^6 + o(x^6),\qquad (x \to 0) \end{align*} \]

​ (5)已知:

\[\frac 1{\sqrt u} = 1 - \frac 12(u - 1) + \frac 38(u - 1)^2 - \frac 5{16}(u - 1)^3 + o((u - 1)^3),\qquad (u \to 1) \]

​ 带入 \(u = 1 - x^2\) 得:

\[\begin{align*} \frac 1{\sqrt{1 - x^2}} & = 1 - \frac 12(-x^2) + \frac 38(-x^2)^2 - \frac 5{16}(-x^2)^3 + o(x^6)\\ & = 1 + \frac 12x^2 + \frac 38x^4 + \frac 5{16}x^6 + o(x^6),\qquad (x \to 0) \end{align*} \]

\(\mathbf{Problem\ 3.}\) 解:

​ (1)

\[f^{(0)}(x) = \sin x,\qquad f^{(1)}(x) = \cos x,\qquad f^{(2)}(x) = -\sin x,\qquad f^{(3)}(x) = -\cos x,\qquad f^{(4)}(x) = \sin x\\ f^{(0)}(x_0) = 1,\qquad f^{(1)}(x_0) = 0,\qquad f^{(2)}(x_0) = -1,\qquad f^{(3)}(x_0) = 0,\qquad f^{(4)}(x_0) = 1 \]

​ 所以:

\[f(x) = \sum_{i = 0}^n \frac{f^{(2i)}(x_0)}{(2i)!}(x - x_0)^{2i} + o((x - x_0)^{2n}) = \sum_{i = 0}^n \frac{(-1)^i}{(2i)!}(x - x_0)^{2i} + o((x - x_0)^{2n}) \]

​ (3)

\[f^{(n)}(x) = e^x,\qquad f^{(n)}(x_0) = e \]

​ 所以:

\[f(x) = \sum_{i = 0}^n \frac{f^{(n)}(x_0)}{i!}(x - x_0)^i + o((x - x_0)^n) = e\sum_{i = 0}^n \frac 1{i!}(x - x_0)^i + o((x - x_0)^n) \]

​ (5)\(f(0) = 0\),将 \(f(x)\) 的定义式整理为:

\[x = (1 + x^2)f(x) \Rightarrow 1 = (1 + x^2)f'(x) + 2xf(x) \Rightarrow 1 = f'(0) \]

​ 对 \(n \ge 2\) 有:

\[x^{(n)} = \sum_{k = 0}^n (1 + x^2)^{(n - k)}f^{(k)}(x) = n(n - 1)f^{(n - 2)}(x) + 2nxf^{(n - 1)}(x) + (1 + x^2)f^{(n)}(x) = 0 \]

​ 代入 \(x = 0\) 可得:

\[f^{(n)}(0) = -n(n - 1)f^{(n - 2)}(x) = (-1)^j\frac{n!}{(n - 2j)!}f^{(n - 2j)}(0) \]

​ 若 \(n = 2k\) 则:

\[f^{(n)}(0) = (-1)^k\frac{n!}{0!}f^{(0)}(0) = 0 \]

​ 若 \(n = 2k + 1\) 则:

\[f^{(n)}(0) = (-1)^k\frac{n!}{1!}f^{(1)}(0) = (-1)^k(2k + 1)! \]

​ 因此:

\[f(x) = \sum_{k = 0}^n \frac{(-1)^k(2k + 1)!}{(2k + 1)!}x^{2k + 1} = \sum_{k = 0}^n (-1)^kx^{2k + 1} \]

\(\mathbf{Problem\ 5.}\) 证明:易知:

\[\left(\ln(1 + x)\right)^{(n)} = (-1)^{n - 1}\frac{(n - 1)!}{(1 + x)^n} \]

​ 则:

\[\ln(1 + x) = \sum_{k = 1}^{2n - 1} (-1)^{k - 1}\frac{(k - 1)!}{1^k}\frac{x^k}{k!} + (-1)^{2n - 1}\frac{(2n - 1)!}{(1 + \xi)^{2n}}\frac{x^{2n}}{(2n)!} = \sum_{k = 1}^{2n - 1}\frac{(-1)^{k - 1}}k x^k - \frac{(1 + \xi)^{-2n}}{2n}x^{2n} \]

​ 其中 \(\xi \in (0, x)\),所以 \((1 + \xi)^{-2n} < 1\),因此:

\[\sum_{k = 1}^{2n}\frac{(-1)^{k - 1}}k x^k = \sum_{k = 1}^{2n - 1}\frac{(-1)^{k - 1}}k x^k - \frac 1{2n}x^{2n} < \ln(1 + x) < \sum_{k = 1}^{2n - 1}\frac{(-1)^{k - 1}}k x^k \]

5.1 节

\(\mathbf{Problem\ 1.}\) 解:

\[\int(2 + x^5)^2\mathrm dx = \int (4 + 4x^5 + x^{10})\mathrm dx = 4x + \frac 23x^6 + \frac 1{11}x^{11} + C \]

\(\mathbf{Problem\ 2.}\) 解:

\[\int\left(\frac{1 - x}x\right)^2\mathrm dx = \int\left(\frac 1{x^2} - \frac 2x + 1\right)\mathrm dx = x - 2\ln x - \frac 1{|x|} + C \]

\(\mathbf{Problem\ 3.}\) 解:

\[\int\left(1 - \frac 1{x^2}\right)\sqrt x\mathrm dx = \int\left(x^\frac 12 - x^{-\frac 32}\right)\mathrm dx = \frac 23x^\frac 32 + 2x^{-\frac 12} + C \]

\(\mathbf{Problem\ 4.}\) 解:

\[\int\cosh x\mathrm dx = \int\frac{e^x + e^{-x}}2\mathrm dx = \frac{e^x - e^{-x}}2 + C = \sinh x + C \]

\(\mathbf{Problem\ 5.}\) 解:

\[\int\sinh x\mathrm dx = \int\frac{e^x - e^{-x}}2\mathrm dx = \frac{e^x + e^{-x}}2 + C = \cosh x + C \]

\(\mathbf{Problem\ 6.}\) 解:

\[\int\frac{2^{x + 1} - 5^{x - 1}}{10^x}\mathrm dx = \int\left(2\left(\frac 15\right)^x - \frac 15\left(\frac 12\right)^x\right)\mathrm dx = -\frac 2{\ln 5}\left(\frac 15\right)^x + \frac 1{5\ln 2}\left(\frac 12\right)^x + C \]

\(\mathbf{Problem\ 7.}\) 解:

\[\int\frac{e^{3x} + 1}{e^x + 1}\mathrm dx = \int(e^{2x} - e^x + 1)\mathrm dx = \frac 12e^{2x} - e^x + x + C \]

\(\mathbf{Problem\ 8.}\) 解:

\[\begin{align*} \int\sqrt{1 - \sin 2x}\mathrm dx & = \int|\sin x - \cos x|\mathrm dx = \int(\sin x - \cos x) \cdot \mathrm{sgn}(\sin x - \cos x)\mathrm dx\\ & = \mathrm{sgn}(\sin x - \cos x)\int\sin x\mathrm dx - \mathrm{sgn}(\sin x - \cos x)\int\cos x\mathrm dx\\ & = -\mathrm{sgn}(\sin x - \cos x)\cos x - \mathrm{sgn}(\sin x - \cos x)\sin x + C\\ & = -(\sin x + \cos x)\frac{|\sin x - \cos x|}{\sin x - \cos x} + C \end{align*} \]

\(\mathbf{Problem\ 9.}\) 解:

\[\int\frac{\mathrm dx}{(x + a)(x + b)} = \frac 1{b - a}\int\left(\frac 1{x + a} - \frac 1{x + b}\right)\mathrm dx = \frac 1{b - a}\ln\left|\frac{x + a}{x + b}\right| + C \]

\(\mathbf{Problem\ 10.}\) 解:

\[\int\cos^2 x\mathrm dx = \int\frac{1 + \cos 2x}2\mathrm dx = \frac 12\left(x + \frac 12\sin 2x\right) + C \]

\(\mathbf{Problem\ 11.}\) 解:

\[\int\sin^2 x\mathrm dx = \int\frac{1 - \cos 2x}2\mathrm dx = \frac 12\left(x - \frac 12\sin 2x\right) + C \]

\(\mathbf{Problem\ 12.}\) 解:

\[\int\frac{x^5}{1 + x}\mathrm dx = \int\left(1 - x + x^2 - x^3 + x^4 - \frac 1{1 + x}\right)\mathrm dx = x - \frac 12x^2 + \frac 13x^3 - \frac 14x^4 + \frac 15x^5 - \ln|1 + x| + C \]

\(\mathbf{Problem\ 13.}\) 解:

\[\int\frac{\mathrm dx}{\cos^2x \sin^2x} = \int\left(\frac 1{\cos^2x} + \frac 1{\sin^2x}\right)\mathrm dx = \tan x - \cot x + C \]

\(\mathbf{Problem\ 14.}\) 解:

\[\int\frac{x^4}{1 + x^2}\mathrm dx = \int\left(x^2 - 1 + \frac 1{1 + x^2}\right)\mathrm dx = \frac 13x^3 - x + \arctan x + C \]

5.2 节

\(\mathbf{Problem\ 1.}\) 解:

​ (1)

\[\int\arctan x\mathrm dx = x\arctan x - \int\frac x{1 + x^2}\mathrm dx = x\arctan x - \frac 12\int\frac{\mathrm d(1 + x^2)}{1 + x^2} = x\arctan x - \frac 12\ln(1 + x^2) + C \]

​ (3)

\[\int x~\mathrm{arccot} x\mathrm dx = x^2\mathrm{arccot}x - \int\left(x~\mathrm{arccot}x - 1 + \frac{1}{1 + x^2}\right)\mathrm dx = x^2\mathrm{arccot}x + x - \arctan x - \int x~\mathrm{arccot}x\mathrm dx\\ \Rightarrow \int x~\mathrm{arccot} x\mathrm dx = \frac 12(x^2\mathrm{arccot}x + x - \arctan x) \]

​ (5)

\[\begin{align*} \int\ln(x + \sqrt{1 + x^2})\mathrm dx & = x\ln(x + \sqrt{1 + x^2}) - \int x\cdot\frac{x + \sqrt{1 + x^2}}{1 + x^2 + x\sqrt{1 + x^2}}\mathrm dx\\ & = x\ln(x + \sqrt{1 + x^2}) - \int \frac x{\sqrt{1 + x^2}}\mathrm dx = x\ln(x + \sqrt{1 + x^2}) - \frac 12\int \frac {\mathrm d(1 + x^2)}{\sqrt{1 + x^2}}\\ & = x\ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + C\\ \end{align*} \]

​ (7)

\[\begin{align*} \int x^2\cos x\mathrm dx & = \int x^2\mathrm d(\sin x) = x^2\sin x - \int 2x\sin x\mathrm dx = x^2\sin x + 2\int x\mathrm d(\cos x)\\ & = x^2\sin x + 2\left(x\cos x - \int \cos x\mathrm dx\right) = x^2\sin x + 2x\cos x - 2\sin x + C \end{align*} \]

​ (9)

\[\begin{align*} \int\frac{\arctan x}{x^2}\mathrm dx & = -\int\arctan x\mathrm d\left(\frac 1x\right) = -\left(\frac{\arctan x}x - \int\frac{\mathrm dx}{x(1 + x^2)}\right) = -\frac{\arctan x}x + \frac 12\int\frac{\mathrm d(x^2)}{x^2(1 + x^2)}\\ & = -\frac{\arctan x}x + \frac 12\int\left(\frac 1{x^2} - \frac 1{1 + x^2}\right)\mathrm d(x^2) = \frac 12\ln\frac{x^2}{1 + x^2} - \frac{\arctan x}x + C \end{align*} \]

​ (11)

\[\int\cos\ln x\mathrm dx = x\cos\ln x + \int\sin\ln x\mathrm dx = x\cos\ln x + x\sin\ln x - \int\cos\ln x\mathrm dx\\ \Rightarrow \int\cos\ln x\mathrm dx = \frac x2(\cos\ln x + \sin\ln x) + C \]

\(\mathbf{Problem\ 2.}\) 解:记:

\[I_n = \int p^{(n)}(x)e^{ax}\mathrm dx \]

​ 由于 \(p\)\(n\) 次多项式,所以 \(p^{(n + 1)} \equiv 0\),故 \(I_{n + 1} = 0\)。又有:

\[I_k = \int p^{(k)}(x)e^{ax}\mathrm dx = \frac 1a\int p^{(k)}(x)\mathrm d(e^{ax}) = \frac 1a\left(p^{(k)}(x)e^{ax} - \int e^{ax}\mathrm d(p^{(k)}(x))\right) = \frac 1a\left(p^{(k)}(x)e^{ax} - I_{k + 1}\right)\\ \Rightarrow I_{k + 1} = p^{(k)}(x)e^{ax} - aI_k \Rightarrow \frac{I_{k + 1}}{(-a)^{k + 1}} = \frac{I_k}{(-a)^k} + e^{ax}\frac{(-1)^{k + 1}p^{(k)}(x)}{a^{k + 1}} \]

​ 记 \(t_k = \frac{I_k}{(-a)^k}\),则:

\[t_{k + 1} = t_k + e^{ax}\frac{(-1)^{k + 1}p^{(k)}(x)}{a^{k + 1}} = t_0 + e^{ax}\sum_{i = 0}^k\frac{(-1)^{i + 1}p^{(i)}(x)}{a^{i + 1}} \]

​ 代入 \(k = n\) 即得:

\[0 = t_0 + e^{ax}\sum_{i = 0}^n\frac{(-1)^{i + 1}p^{(i)}(x)}{a^{i + 1}} = I_0 + e^{ax}\sum_{i = 0}^n\frac{(-1)^{i + 1}p^{(i)}(x)}{a^{i + 1}} \]

​ 整理得:

\[\int p(x)e^{ax}\mathrm dx = I_0 = -e^{ax}\sum_{i = 0}^n\frac{(-1)^{i + 1}p^{(i)}(x)}{a^{i + 1}} = e^{ax}\sum_{i = 0}^n\frac{(-1)^i p^{(i)}(x)}{a^{i + 1}} + C \]

\(\mathbf{Problem\ 4.}\) 解:

​ (1)

\[\int xe^{-x^2}\mathrm dx = -\frac 12\int e^{-x^2}\mathrm d(-x^2) = -\frac 12e^{-x^2} + C \]

​ (3)

\[\int\frac{\ln^2x}x\mathrm dx = \int\ln^2x\mathrm d(\ln x) = \frac 13\ln^3x + C \]

​ (5)

\[\int\frac{\mathrm dx}{\cosh x} = \int\frac{2\mathrm dx}{e^x + e^{-x}} = 2\int\frac{\mathrm d(e^x)}{1 + e^{2x}} = 2\arctan e^x + C \]

​ (7)

\[\int\frac{\mathrm dx}{\sin x} = \int\frac{-\mathrm d(\cos x)}{\sin^2x} = -\int\frac{\mathrm d(\cos x)}{1 - \cos^2x} = -\frac 12\int\left(\frac 1{1 - \cos x} + \frac 1{1 + \cos x}\right)\mathrm d(\cos x) = -\frac 12\ln\left|\frac{1 + \cos x}{1 - \cos x}\right| + C \]

​ (9)

\[\int\frac 1{x^2}\sin\frac 1x\mathrm dx = -\int\sin\frac 1x\mathrm d\left(\frac 1x\right) = \cos\frac 1x + C \]

​ (11)

\[\int\frac{\mathrm dx}{(a + bx)^2} = \frac 1b\int\frac{\mathrm d(a + bx)}{(a + bx)^2} = -\frac 1{b(a + bx)} + C \]

​ (13)

\[\int\cos ax\cos bx\mathrm dx = \frac 12\int(\cos(a + b)x + \cos(a - b)x)\mathrm dx = \frac 12\left(\frac {\sin(a + b)x}{a + b} + \frac{\sin(a - b)x}{a - b}\right) + C \]

​ (15)

\[\int\sin^4x\mathrm dx = \int\frac{\cos 4x - 4\cos 2x + 3}8\mathrm dx = \frac 18(\frac 14\sin 4x - 2\sin 2x + 3x) = \frac 1{32}\sin 4x - \frac 14\sin 2x + \frac 38x + C \]

​ (17)

\[\int\frac{\cos x + \sin x}{\sqrt[3]{\sin x - \cos x}}\mathrm dx = \int\frac{\sqrt 2\sin(x + \frac\pi4)}{\sqrt[3]{-\sqrt 2\cos(x + \frac\pi4)}}\mathrm dx = \int\frac{\sqrt[3]2\mathrm d(\cos(x + \frac\pi4))}{\sqrt[3]{\cos(x + \frac\pi4)}} = \frac 32\sqrt[3]2 \cos^\frac 23(x + \frac\pi4) + C \]

​ (19)

\[\begin{align*} \int\frac{\cos x\sin x}{a^2\cos^2x + b^2\sin^2x}\mathrm dx & = \frac 12\int\frac{\mathrm d(\sin^2x)}{a^2 + (b^2 - a^2)\sin^2x} = \frac 1{2(b^2 - a^2)}\int\frac{\mathrm d(a^2 + (b^2 - a^2)\sin^2x)}{a^2 + (b^2 - a^2)\sin^2x}\\ & = \frac{\ln|a^2 + (b^2 - a^2)\sin^2x|}{2(b^2 - a^2)} + C \end{align*} \]

​ (21)令 \(u = \tan\frac x2\),则:

\[\int\frac{\mathrm dx}{a\cos x + b\sin x} = \int\frac{\frac{2\mathrm du}{1 + u^2}}{a\frac{1 - u^2}{1 + u^2} + b\frac{2u}{1 + u^2}} = 2\int\frac{\mathrm du}{-au^2 + 2bu + a} \]

​ 当 \(a = 0\) 时:

\[I = \frac 1b\int\frac{\mathrm du}{u} = \frac{\ln\left|\tan\frac x2\right|}b + C \]

​ 当 \(a \neq 0\) 时:

\[\begin{align*} I & = 2\int\frac{\mathrm du}{-au^2 + 2bu + a} = 2\int\frac{-a\mathrm du}{\left(au - (b + \sqrt{a^2 + b^2})\right)\left(au - (b - \sqrt{a^2 + b^2})\right)}\\ & = -\frac 1{\sqrt{a^2 + b^2}}\int\left(\frac 1{au - (b + \sqrt{a^2 + b^2})} - \frac 1{au - (b - \sqrt{a^2 + b^2})}\right)\mathrm d(au)\\ & = -\frac 1{\sqrt{a^2 + b^2}}\ln\left|\frac{au - (b + \sqrt{a^2 + b^2})}{au - (b - \sqrt{a^2 + b^2})}\right| + C\\ & = -\frac 1{\sqrt{a^2 + b^2}}\ln\left|\frac{a\tan\frac x2 - (b + \sqrt{a^2 + b^2})}{a\tan\frac x2 - (b - \sqrt{a^2 + b^2})}\right| + C \end{align*} \]

​ (23)

\[\int\frac{\ln x}{x\sqrt{1 + \ln x}}\mathrm dx = \int\frac{\ln x}{\sqrt{1 + \ln x}}\mathrm d(\ln x) = \int\left(\sqrt{1 + \ln x} - \frac 1{\sqrt{1 + \ln x}}\right)\mathrm d(1 + \ln x) = \frac 23(1 + \ln x)^\frac 32 - 2(1 + \ln x)^\frac 12 + C \]

​ (25)

\[\begin{align*} \int\frac{x\mathrm dx}{\sqrt{1 + x^2 + (1 + x^2)^\frac32}} & = \frac 12\int\frac{\mathrm d(1 + x^2)}{\sqrt{(1 + x^2) + (1 + x^2)^\frac 32}} = \frac 12\int\frac{2\mathrm d(\sqrt{1 + x^2})}{\sqrt{1 + \sqrt{1 + x^2}}}\\ & = \int\frac{\mathrm d(1 + \sqrt{1 + x^2})}{\sqrt{1 + \sqrt{1 + x^2}}} = 2\sqrt{1 + \sqrt{1 + x^2}} + C \end{align*} \]

​ (27)

\[\int e^\sqrt x\mathrm dx = \int 2\sqrt xe^\sqrt x\mathrm d(\sqrt x) = 2\int\sqrt x\mathrm d(e^\sqrt x) = 2\sqrt xe^\sqrt x - 2e^\sqrt x + C \]

​ (29)

\[\begin{align*} \int\arctan\sqrt x\mathrm dx & = x\arctan\sqrt x - \int x\cdot\frac{\mathrm dx}{2\sqrt x(1 + x)} = x\arctan\sqrt x - \int\frac x{1 + x}\mathrm d(\sqrt x)\\ & = x\arctan\sqrt x - \int\left(1 - \frac 1{1 + (\sqrt x)^2}\right)\mathrm d(\sqrt x) = x\arctan\sqrt x - \sqrt x + \arctan\sqrt x + C \end{align*} \]

​ (31)令 \(x = \tan u~(u \in [0, \pi))\),则:

\[\int\frac{\mathrm dx}{\sqrt{1 + x^2}} = \int\frac{\mathrm du}{\cos u} = \int\frac{\mathrm d(\sin u)}{1 - \sin^2u} = \frac 12\int\left(\frac 1{1 - \sin u} + \frac 1{1 + \sin u}\right)\mathrm d(\sin u) = \frac 12\ln\left|\frac{1 + \sin u}{1 - \sin u}\right| + C \]

​ 又因为:

\[x^2 = \frac{\sin^2u}{1 - \sin^2u} \Rightarrow \sin u = \frac{|x|}{\sqrt{1 + x^2}} \]

​ 代入得:

\[\int\frac{\mathrm dx}{\sqrt{1 + x^2}} = \frac 12\ln\frac{\sqrt{1 + x^2} + |x|}{\sqrt{1 + x^2} - |x|} + C \]

​ 所以:

\[\int\frac{x^\frac n2}{\sqrt{1 + x^{n + 2}}}\mathrm dx = \frac 2{n + 2}\int\frac{\mathrm d\left(x^\frac{n + 2}2\right)}{\sqrt{1 + \left(x^\frac{n + 2}2\right)^2}} = \frac 1{n + 2}\ln\frac{\sqrt{1 + x^{n + 2}} + |x^\frac{n + 2}2|}{\sqrt{1 + x^{n + 2}} - |x^\frac{n + 2}2|} + C \]

​ (33)

\[\int\frac{\cos x\sin x}{1 + \sin^4x}\mathrm dx = \frac 12\int\frac{\mathrm d(\sin^2x)}{1 + \sin^4x} = \frac 12\arctan(\sin^2 x) + C \]

\(\mathbf{Problem\ 5.}\) 解:

\[I_n = \int\ln^nx\mathrm dx = x\ln^nx - \int n\ln^{n - 1}x\mathrm dx = x\ln^nx - nI_{n - 1} \]

\(\mathbf{Problem\ 6.}\) 解:

​ (1)令 \(x = a\sinh t\),则:

\[\int(x^2 + a^2)^{-\frac 32}\mathrm dx = a^{-2}\int\frac{\mathrm dt}{\cosh^2t} = a^{-2}\int\frac{4e^{2t}\mathrm dt}{(1 + e^{2t})^2} = 2a^{-2}\int\frac{\mathrm d(1 + e^{2t})}{(1 + e^{2t})^2} = -\frac 2{a^2(1 + e^{2t})} + C \]

​ 又因为:

\[\frac{2x}a = e^t - \frac 1{e^t} \Rightarrow (e^t)^2 - \frac{2x}ae^t - 1 = 0 \Rightarrow e^t = \frac xa + \sqrt{\frac{x^2}{a^2} + 1} \Rightarrow e^{2t} = 1 + \frac{2x^2}{a^2} + \frac{2x}a\sqrt{\frac{x^2}{a^2} + 1} \]

​ 所以:

\[a^2(1 + e^{2t}) = 2(a^2 + x^2 + x\sqrt{a^2 + x^2}) = 2\sqrt{a^2 + x^2}(x + \sqrt{a^2 + x^2}) \]

​ 因此:

\[-\frac 2{a^2(1 + e^{2t})} = -\frac 1{\sqrt{a^2 + x^2}}\cdot\frac 1{x + \sqrt{a^2 + x^2}} = -\frac 1{\sqrt{a^2 + x^2}}\cdot\frac{\sqrt{a^2 + x^2} - x}{a^2} = \frac 1{a^2}\left(\frac x{\sqrt{a^2 + x^2}} - 1\right) \]

​ 即:

\[\int(x^2 + a^2)^{-\frac 32}\mathrm dx = \frac 1{a^2}\left(\frac x{\sqrt{a^2 + x^2}} - 1\right) + C = \frac x{a^2\sqrt{a^2 + x^2}} + C \]

​ (3)令 \(x = a\cosh t\),则:

\[\int\sqrt{x^2 - a^2}\mathrm dx = a^2\int\sinh^2t\mathrm dt = \frac{a^2}4\int(e^{2t} + e^{-2t} - 2)\mathrm dt = \frac{a^2}4\left(\frac{e^{2t} - e^{-2t}}2 - 2t\right) + C \]

​ 又因为:

\[e^{2t} - e^{-2t} = (e^t + e^{-t})(e^t - e^{-t}) = 4\sinh t\cosh t \]

​ 所以:

\[\int\sqrt{x^2 - a^2}\mathrm dx = \frac{a^2}2\left(\sinh t\cosh t - t\right) + C \]

\(\mathbf{Problem\ 7.}\) 解:

​ (1)

\[I_n = \int x^ne^x\mathrm dx = \int x^n\mathrm d(e^x) = x^ne^x - nI_{n - 1} \]

​ 则 \(I_{-1} = \frac{e^x}x + I_{-2}\),因此:

\[\int\left(1 - \frac 2x\right)^2e^x\mathrm dx = e^x - 4I_{-1} + 4I_{-2} + C = \left(1 - \frac 4x\right)e^x + C \]

\(\mathbf{Problem\ 8.}\) 解:

​ (1)即:

\[f'(x) = \frac 1{\sqrt x} \]

​ 则:

\[f(x) = \int f'(x)\mathrm dx = \int\frac{\mathrm dx}{\sqrt x} = 2\sqrt x + C \]

5.3 节

\(\mathbf{Problem~3.}\) 解:

\[\begin{align*} \int\frac{\mathrm dx}{2x^3 + 3x^2 + x} & = \int\frac{\mathrm dx}{x(x + 1)(2x + 1)} = \int\left(\frac 1x + \frac 1{x + 1} - \frac 4{2x + 1}\right)\mathrm dx\\ & = \ln|x| + \ln|x + 1| - 2\ln|2x + 1| + C \end{align*} \]

\(\mathbf{Problem~11.}\) 解:

\[\begin{align*} \int\frac{\mathrm dx}{x(x^2 + 1)^2} & = \int\left(\frac 1x - \frac x{1 + x^2} - \frac x{(1 + x^2)^2}\right)\mathrm dx\\ & = \ln|x| - \frac 12\int\frac{\mathrm d(1 + x^2)}{1 + x^2} - \frac 12\int\frac{\mathrm d(1 + x^2)}{(1 + x^2)^2}\\ & = \ln|x| - \frac 12\ln(1 + x^2) + \frac 12\cdot\frac 1{1 + x^2} + C \end{align*} \]

\(\mathbf{Problem~12.}\) 解:

\[\begin{align*} \int\frac{\mathrm du}{u^2 + 2} & = \frac 1{\sqrt 2}\int\frac{\mathrm d\left(\frac u{\sqrt 2}\right)}{1 + \left(\frac u{\sqrt 2}\right)^2} = \frac 1{\sqrt 2}\arctan\frac u{\sqrt 2} + C_1\\ \int\frac{\mathrm dv}{v^2 - 2} & = \int\left(\frac 1{v - \sqrt 2} - \frac 1{v + \sqrt 2}\right)\frac{\mathrm dv}{2\sqrt 2} = \frac 1{2\sqrt 2}\ln\left|\frac{v - \sqrt 2}{v + \sqrt 2}\right| + C_2\\ \int\frac{\mathrm dx}{1 + x^4} & = \frac 12\left(\int\frac{x^2 + 1}{1 + x^4}\mathrm dx - \int\frac{x^2 - 1}{1 + x^4}\mathrm dx\right) = \frac 12\left(\int\frac{1 + x^{-2}}{\left(x - \frac 1x\right)^2 + 2}\mathrm dx - \int\frac{1 - x^{-2}}{\left(x + \frac 1x\right)^2 - 2}\mathrm dx\right)\\ & = \frac 12\left(\int\frac{\mathrm d\left(x - \frac 1x\right)}{\left(x - \frac 1x\right)^2 + 2} - \int\frac{\mathrm d\left(x + \frac 1x\right)}{\left(x + \frac 1x\right)^2 - 2}\right)\\ & = \frac 12\left(\frac 1{\sqrt 2}\arctan\frac {x - \frac 1x}{\sqrt 2} - \frac 1{2\sqrt 2}\ln\left|\frac{x + \frac 1x - \sqrt 2}{x + \frac 1x + \sqrt 2}\right|\right) + C \end{align*} \]

\(\mathbf{Problem~13.}\) 解:

\[\int\frac{1 + x^2}{1 + x^4}\mathrm dx = \int\frac{1 + x^{-2}}{\left(x - \frac 1x\right)^2 + 2}\mathrm dx = \int\frac{\mathrm d\left(x - \frac 1x\right)}{\left(x - \frac 1x\right)^2 + 2} = \frac 1{\sqrt 2}\arctan\frac {x - \frac 1x}{\sqrt 2} + C \]

\(\mathbf{Problem~14.}\) 解:

\[\int\frac{\mathrm dx}{x^4(1 + x^2)} = \int\left(-\frac 1{x^2} + \frac 1{x^4} + \frac 1{1 + x^2}\right)\mathrm dx = \frac 1x - \frac 1{3x^3} + \arctan x + C \]

5.4 节

\(\mathbf{Problem~1.}\) 解:

​ (1)

\[\int\frac{\sin^3x}{\cos^4x}\mathrm dx = \int\left(\frac 1{\cos^2x} - \frac 1{\cos^4x}\right)\mathrm d(\cos x) = -\frac 1{\cos x} + \frac 1{3\cos^3x} + C \]

​ (3)令 \(t = \tan\frac x2\),则:

\[\begin{align*} \int\frac{\mathrm dx}{2\sin x - \cos x + 5} & = \int\frac{\mathrm dt}{3t^2 + 2t + 2} = \frac 13\int\frac{\mathrm d\left(t + \frac 13\right)}{\left(t + \frac 13\right)^2 + \frac 59} = \frac 13\sqrt{\frac 95}\int\frac{\mathrm d\left(\sqrt{\frac 95}\left(t + \frac 13\right)\right)}{1 + \left(\sqrt{\frac 95}\left(t + \frac 13\right)\right)^2}\\ & = \frac 1{\sqrt 5}\arctan\frac{3t + 1}{\sqrt 5} + C = \frac 1{\sqrt 5}\arctan\frac{3\tan\frac x2 + 1}{\sqrt 5} + C \end{align*} \]

​ (5)令 \(t = \tan\frac x2\),则:

\[\begin{align*} \int\frac{\sin x}{1 + \cos x + \sin x}\mathrm dx & = \int\frac{2t\mathrm dt}{(t + 1)(t^2 + 1)} = \int\left(-\frac 1{t + 1} + \frac{t}{t^2 + 1} + \frac 1{t^2 + 1}\right)\mathrm dt\\ & = -\ln|t + 1| + \arctan t + \frac 12\int\frac{\mathrm d(t^2 + 1)}{t^2 + 1}\\ & = -\ln|\tan\frac x2 + 1| + \frac 12\ln(\tan\left(\frac x2\right)^2 + 1) + \frac x2 + C\\ \end{align*} \]

​ (7)

\[\cos^2x = \frac{1 + \cos 2x}2,\qquad \sin^2x = \frac{1 - \cos 2x}2\\ \cos^4x + \sin^4x = \frac{1 + \cos^2 2x}2 \]

​ 令 \(u = \tan 2x\),则:

\[\begin{align*} \int\frac{\mathrm dx}{\cos^4x + \sin^4x} & = \int\frac{\mathrm d(2x)}{1 + \cos^2 2x} = \int\frac{\frac{\mathrm du}{1 + u^2}}{1 + \frac 1{1 + u^2}} = \frac 1{\sqrt 2}\int\frac{\mathrm d\left(\frac u{\sqrt 2}\right)}{1 + \left(\frac u{\sqrt 2}\right)^2}\\ & = \frac 1{\sqrt 2}\arctan\frac {\tan 2x}{\sqrt 2} + C \end{align*} \]

​ (9)令 \(u = \tan x\),则:

\[\begin{align*} \int\frac{\sin x}{\cos^3x + \sin^3x}\mathrm dx & = \int\frac{\mathrm dx}{\sin^2x + \frac{\cos^2x}u} = \int\frac{\frac{\mathrm du}{1 + u^2}}{\frac{u^2}{1 + u^2} + \frac 1{u(1 + u^2)}} = \int\frac{u\mathrm du}{u^3 + 1}\\ & = \frac 13\int\left(-\frac 1{u + 1} + \frac{u + 1}{u^2 - u + 1}\right)\mathrm du\\ & = \frac 13\left(-\ln|u + 1| + \frac 12\int\frac{\mathrm d\left(\left(u - \frac 12\right)^2 + \frac 34\right)}{\left(u - \frac 12\right)^2 + \frac 34} + \frac 32\int\frac{\mathrm d\left(u - \frac 12\right)}{\left(u - \frac 12\right)^2 + \frac 34}\right)\\ & = -\frac 13\ln|u + 1| + \frac 16\ln\left(\left(u - \frac 12\right)^2 + \frac 34\right) + \frac 12\sqrt{\frac 43}\int\frac{\mathrm d\left(\sqrt{\frac 43}\left(u - \frac 12\right)\right)}{1 + \left(\sqrt{\frac 43}\left(u - \frac 12\right)\right)^2}\\ & = -\frac 13\ln|u + 1| + \frac 16\ln\left(u^2 - u + 1\right) + \frac 1{\sqrt 3}\arctan\frac{2u - 1}{\sqrt 3} + C\\ \end{align*} \]

​ (11)令 \(t = \tan\frac x2\),则:

\[\begin{align*} \int\frac{\mathrm dx}{1 + \epsilon\cos x} & = \int\frac{\frac{2\mathrm dt}{1 + t^2}}{1 + \epsilon\frac{1 - t^2}{1 + t^2}} = \frac 2{1 - \epsilon}\int\frac{\mathrm dt}{\frac{1 + \epsilon}{1 - \epsilon} + t^2} = \frac 2{\sqrt{(1 - \epsilon)(1 + \epsilon)}}\int\frac{\mathrm d\left(\sqrt\frac{1 - \epsilon}{1 + \epsilon}t\right)}{1 + \left(\sqrt\frac{1 - \epsilon}{1 + \epsilon}t\right)^2}\\ & = \frac 2{\sqrt{(1 - \epsilon)(1 + \epsilon)}}\arctan\left(\sqrt\frac{1 - \epsilon}{1 + \epsilon}\tan\frac x2\right) + C \end{align*} \]

\(\mathbf{Problem~2.}\) 解:

​ (2)令 \(t = x^\frac 16\),则:

\[\int\frac{t^2}{t^6(t^3 + t^2)}\mathrm d(t^6) = 6\int\left(\frac 1t - \frac 1{t + 1}\right)\mathrm dt = 6\ln\left|\frac{x^\frac 16}{x^\frac 16 + 1}\right| + C \]

​ (4)令 \(x = \tan u, (u \in \left(-\frac{\pi}2, \frac{\pi}2\right))\),则:

\[\begin{align*} \int\frac{\sqrt{1 + x^2}}{2 + x^2}\mathrm dx & = \int\frac{\frac 1{\cos u}}{2 + \tan^2u}\cdot\frac{\mathrm du}{\cos^2u} = \int\left(\frac 1{\cos u} - \frac{\cos u}{1 + \cos^2u}\right)\mathrm du\\ & = \int\sec u\mathrm du - \int\frac{\mathrm d(\sin u)}{2 - \sin^2u}\\ & = \int\frac{\mathrm d(\sec u + \tan u)}{\sec u + \tan u} - \frac 1{2\sqrt 2}\int\left(\frac 1{\sqrt 2 - \sin u} + \frac 1{\sqrt 2 + \sin u}\right)\mathrm d(\sin u)\\ & = \ln|\sec u + \tan u| - \frac 1{2\sqrt 2}\ln\left|\frac{\sqrt 2 + \sin u}{\sqrt 2 - \sin u}\right| + C\\ & = \ln\left|x + \sqrt{1 + x^2}\right| - \frac 1{2\sqrt 2}\ln\left|\frac{\sqrt 2\cdot\sqrt{1 + x^2} + x}{\sqrt 2\cdot\sqrt{1 + x^2} - x}\right| + C\\ \end{align*} \]

​ (6)令 \(t = \sqrt{1 + 2x^2}\),则 \(x^2 = \frac{t^2 - 1}2\),因此:

\[\begin{align*} \int\frac{x^3}{\sqrt{1 + 2x^2}}\mathrm dx & = \frac 12\int\frac{\frac{t^2 - 1}2}{t}\mathrm d\left(\frac{t^2 - 1}2\right) = \frac 14\int(t^2 - 1)\mathrm dt = \frac 1{12}t^3 - \frac 14t + C\\ & = \frac 12(1 + 2x^2)^\frac 32 - \frac 14(1 + 2x^2)^\frac 12 + C \end{align*} \]

​ (8)令 \(x = a\sin u, (u \in \left(-\frac{\pi}2, \frac{\pi}2\right))\),则:

\[\begin{align*} \int\frac{\mathrm dx}{x\sqrt{a^2 - x^2}} & = \int\frac{a\cos u\mathrm du}{a^2\sin u\cos u}\mathrm du = \frac 1a\int\csc u\mathrm du\\ & = \frac 1a\int\frac{\mathrm d(\csc u - \cot u)}{\csc u - \cot u} = \frac 1a\ln|\csc u - \cot u| + C\\ & = \frac 1a\ln\left|\frac{a - \sqrt{a^2 - x^2}}x\right| + C \end{align*} \]

​ (10)

\[\begin{align*} \int\frac{\mathrm dx}{(x + a)^2(x + b)^3} & = \int-\frac 3{(b - a)^4(x + a)}\mathrm dx + \int\frac 1{(b - a)^3(x + a)^2}\mathrm dx\\ &\quad+ \int\frac 3{(b - a)^4(x + b)}\mathrm dx + \int\frac 2{(b - a)^3(x + b)^2}\mathrm dx\\ &\quad+ \int\frac 1{(b - a)^2(x + b)^3}\mathrm dx\\ & = -\frac 3{(b - a)^4}\ln(x + a) - \frac 1{(b - a)^3(x + a)} + \frac 3{(b - a)^4}\ln(x + b)\\ &\quad- \frac 2{(b - a)^3(x + b)} - \frac 1{2(b - a)^2(x + b)^2} + C \end{align*} \]

​ (12)令 \(t = 1 + x^{-n}\),则:

\[\begin{align*} \int\frac{\mathrm dx}{(1 + x^n)\sqrt[n]{1 + x^n}} & = \int\frac 1{(1 + x^n)^{1 + \frac 1n}}\mathrm dx = \int\frac 1{x^{n + 1}(1 + x^{-n})^{1 + \frac 1n}}\mathrm dx\\ & = -\frac 1n\int\frac{\mathrm dt}{t^{1 + \frac 1n}} = t^{-\frac 1n} + C = \frac x{\sqrt[n]{1 + x^n}} + C\\ \end{align*} \]

6.1 节

\(\mathbf{Problem~1.}\) 解:

​ (1)令 \(y = \sqrt{(x - a)(b - x)}\),则:

\[\left(x - \frac{a + b}2\right)^2 + y^2 = \left(\frac{a - b}2\right)^2,\qquad y \ge 0 \]

​ 因此 \(y(x)\)\(x \in [a, b]\) 处的图像为以 \(\left(\frac{a + b}2, 0\right)\) 为圆心,以 \(\frac{b - a}2\) 为半径的圆在 \(x\) 轴上方的部分,故:

\[\int_a^b\sqrt{(x - a)(b - x)}\mathrm dx = \frac{\pi}8(a - b)^2 \]

\(\mathbf{Problem~2.}\) 解:取 \([a, b]\)\(n + 1\) 个分割点 \(a = x_0 < x_1 < \cdots < x_n = b\),任取 \(\xi_k \in [x_{k - 1}, x_k]\)。令 \(3\eta_k^2 = x_k^2 + x_{k - 1}^2 + x_{k - 1}x_k\),则:

\[\begin{align*} \sum_{i = 1}^n(\xi_i^2 - \eta_i^2)\Delta x_i & \le \frac 13\sum_{i = 1}^n(2x_i^2 - x_{i - 1}^2 - x_{i - 1}x_i)(x_i - x_{i - 1}) = \frac 13\sum_{i = 1}^n(2x_i + x_{i - 1})(x_i - x_{i - 1})^2\\ \sum_{i = 1}^n(\xi_i^2 - \eta_i^2)\Delta x_i & \ge \frac 13\sum_{i = 1}^n(2x_{i - 1}^2 - x_i^2 - x_{i - 1}x_i)(x_i - x_{i - 1}) = -\frac 13\sum_{i = 1}^n(2x_{i - 1} + x_i)(x_i - x_{i - 1})^2\\ \end{align*} \]

​ 又因为 \(x_{i - 1} < x_i \le b\)\(|x_i - x_{i - 1}| \le \lVert\pi\rVert\),则:

\[b(a - b)\lVert\pi\rVert = -b\lVert\pi\rVert\sum_{i = 1}^n(x_i - x_{i - 1}) < \sum_{i = 1}^n(\xi_i^2 - \eta_i^2)\Delta x_i < b\lVert\pi\rVert\sum_{i = 1}^n(x_i - x_{i - 1}) = b(b - a)\lVert\pi\rVert \]

​ 因此:

\[\left|\sum_{i = 1}^n(\xi_i^2 - \eta_i^2)\Delta x_i\right| < (b - a)|b|\cdot\lVert\pi\rVert < (b - a)|b|\delta \]

​ 取 \(\delta < \frac{\epsilon}{(b - a)|b|}\),则:

\[\begin{align*} \left|\sum_{i = 1}^n(\xi_i^2 - \eta_i^2)\Delta x_i\right| & = \left|\sum_{i = 1}^n\xi_i^2\Delta x_i - \sum_{i = 1}^n\eta_i^2\Delta x_i\right|\\ & = \left|\sum_{i = 1}^n\xi_i^2\Delta x_i - \frac 13\sum_{i = 1}^n(x_i - x_{i - 1})\left(x_i^2 + x_{i - 1}^2 + x_{i - 1}x_i\right)\right|\\ & = \left|\sum_{i = 1}^n\xi_i^2\Delta x_i - \frac 13\sum_{i = 1}^n\left(x_i^3 - x_{i - 1}^3\right)\right|\\ & = \left|\sum_{i = 1}^n\xi_i^2\Delta x_i - \frac 13\left(b^3 - a^3\right)\right| < \epsilon\\ \end{align*} \]

​ 因此:

\[\int_a^bx^2\mathrm dx = \frac{b^3 - a^3}3 \]

\(\mathbf{Problem~4.}\) 解:

​ (1)

\[\int\frac{x^2}{1 + x^2}\mathrm dx = \int\left(1 - \frac 1{1 + x^2}\right)\mathrm dx = x - \arctan x + C \]

​ 则可得:

\[\int_{-1}^1 \frac{x^2}{1 + x^2}\mathrm dx = \left.(x - \arctan x)\right|_{-1}^1 = 2 - \frac{\pi}2 \]

​ (3)

\[\int\frac{\mathrm dx}{1 + \epsilon\cos x} = \frac 2{\sqrt{1 - \epsilon^2}}\int\frac{\mathrm d\left(\sqrt{\frac{1 - \epsilon}{1 + \epsilon}}\tan\frac x2\right)}{1 + \left(\sqrt{\frac{1 - \epsilon}{1 + \epsilon}}\tan\frac x2\right)^2} = \frac 2{\sqrt{1 - \epsilon^2}}\arctan\left(\sqrt{\frac{1 - \epsilon}{1 + \epsilon}}\tan\frac x2\right) + C \]

​ 因此:

\[\int_0^\frac \pi2\frac{\mathrm dx}{1 + \epsilon\cos x} = \left.\frac 2{\sqrt{1 - \epsilon^2}}\arctan\left(\sqrt{\frac{1 - \epsilon}{1 + \epsilon}}\tan\frac x2\right)\right|_0^{\frac \pi2} = \frac 2{\sqrt{1 - \epsilon^2}}\arctan\sqrt{\frac{1 - \epsilon}{1 + \epsilon}} \]

\(\mathbf{Problem~5.}\) 解:

​ (1)令:

\[I_n = \int_0^1\frac{x^n}{1 + x}\mathrm dx > 0 \]

​ 则:

\[I_n + I_{n - 1} = \int_0^1 \frac{x^{n - 1}(1 + x)}{1 + x}\mathrm dx = \left.\frac{x^n}n\right|_0^1 = \frac 1n,\qquad (n \ge 1) \]

​ 因此 \(0 < I_n < \frac 1n\),则 \(\lim_{n \to \infty}I_n = 0\)

\(\mathbf{Problem~6.}\) 证明:

​ (1)注意到对 \(x \ge 0\) 有:

\[(x - 2)^2(x + 4) \ge 0 \Rightarrow x^3 + 16 \ge 12x \]

​ 则 \(\frac x{x^3 + 16} \le \frac 1{12}\),因此:

\[\int_0^{10}\frac{x\mathrm dx}{x^3 + 16} \le \int_0^{10}\frac{\mathrm dx}{12} = \frac 56 \]

​ (3)因为:

\[|a\cos x + b\sin x| \le \sqrt{a^2 + b^2}\left|\sin(x + \phi)\right| \le \sqrt{a^2 + b^2} \]

​ 其中 \(\cos\phi = \frac b{\sqrt{a^2 + b^2}}\),则:

\[\int_0^{2\pi}|a\cos x + b\sin x|\mathrm dx \le \int_0^{2\pi}\sqrt{a^2 + b^2}\mathrm dx = 2\pi\sqrt{a^2 + b^2} \]

\(\mathbf{Problem~7.}\) 解:

​ (1)取 \(x_i = \frac in, \xi_i = x_i\),则:

\[\int_0^1\sin\pi x\mathrm dx = \lim_{n \to \infty}\sum_{i = 1}^n\sin\pi\xi_i(x_i - x_{i - 1}) = \lim_{n \to \infty}\frac 1n\sum_{i = 1}^n\sin\frac{\pi i}n = \left.-\frac{\cos\pi x}\pi\right|_0^1 = \frac 2\pi \]

​ (3)取 \(x_i = \frac in, \xi_i = x_i\),则:

\[\int_0^1\frac{\mathrm dx}{1 + x^2} = \lim_{n \to \infty}\sum_{i = 1}^n\frac{x_i - x_{i - 1}}{1 + \xi_i^2} = \lim_{n \to \infty}\frac 1n\sum_{i = 1}^n\frac{n^2}{n^2 + i^2} = \lim_{n \to \infty}\sum_{i = 1}^n\frac n{n^2 + i^2} = \left.\arctan x\right|_0^1 = \frac\pi4 \]

\(\mathbf{Problem~8.}\) 证明:注意到对 \(x \in [-a, b]\) 有:

\[(x + a)(x - b) \le 0 \Rightarrow x^2 \le ab - (a - b)x \]

​ 又因为 \(f > 0\),则:

\[\begin{align*} \int_{-a}^b x^2f(x)\mathrm dx & \le \int_{-a}^b (ab - (a - b)x)f(x)\mathrm dx\\ & = ab\int_{-a}^b f(x)\mathrm dx - (a - b)\int_{-a}^b xf(x)\mathrm dx = ab\int_{-a}^b f(x)\mathrm dx \end{align*} \]

\(\mathbf{Problem~9.}\) 证明:

​ (1)

\[\int\frac{(1 + x)^4}{1 + x^2}\mathrm dx = \int(x^2 + 4x + 5)\mathrm dx - 4\int\frac{\mathrm dx}{1 + x^2} = \frac 13x^3 + 2x^2 + 5x - 4\arctan x + C \]

​ 因此:

\[\int_0^1\frac{(1 + x)^4}{1 + x^2}\mathrm dx = \left.\frac 13x^3 + 2x^2 + 5x - 4\arctan x\right|_0^1 = \frac{22}3 - \pi \]

posted @ 2025-10-26 22:53  Neuro-Reimu  阅读(81)  评论(0)    收藏  举报