tensorflow版线性回归
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
def linearregression():
X = tf.random_normal([100,1],mean=0.0,stddev=1.0)
y_true = tf.matmul(X,[[0.8]]) + [[0.7]]
weights = tf.Variable(initial_value=tf.random_normal([1,1]))
bias = tf.Variable(initial_value=tf.random_normal([1,1]))
y_predict = tf.matmul(X,weights)+bias
loss = tf.reduce_mean(tf.square(y_predict-y_true))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
sess.run(optimizer)
print("loss:", sess.run(loss))
print("weight:", sess.run(weights))
print("bias:", sess.run(bias))
if __name__ == '__main__':
linearregression()
多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。

浙公网安备 33010602011771号