Loading

操作系统笔记三:存储器管理

内存的基础知识

内存用来存放数据的硬件。程序执行前需要先放到内存中才能被CPU处理。

image-20201208212313804

进程的运行原理-指令

image-20201208212350054

逻辑地址与物理地址

相对地址又称逻辑地址绝对地址又称物理地址image-20201208212450563

从写程序到程序运行

image-20201208212517088

装入模块装入内存

装入的三种方式(用三种不同的方式完成逻辑地址到物理地址的转换

绝对装入

绝对装入:在编译时,如果知道程序将放到内存中的哪个位置,编译程序将产生绝对地址的目标代码。装入程序按照装入模块的地址,将程序和数据装入内存。

image-20201209112752927

绝对装入只适用于单道程序环境

程序中使用的绝对地址,可在编译或汇编时给出,也可由程序员直接赋予。通常情况下都是编译或汇编时再转换为绝对地址。

静态重定位

静态重定位:又称可重定位装入。编译、链接后的装入模块的地址都是从0开始的,指令中使用的地址、数据存放的地址都是相对于起始地址而言的逻辑地址。可根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对地址进行“重定位”,将逻辑地址变换为物理地址(地址变换时在装入时一次完成的)image-20201209113248546

静态重定位的特定是一个作业转入内存时,必须分配其要求的全部内存空间,如果没有足够的内存,就不能装入该作业。

作业一旦进入内存后,在运行期间就不能再移动,也不能再申请内存空间。

动态重定位

动态重定位:又称动态运行时装入。编译、链接后的装入模块的地址都是从0开始的。装入程序把装入模块装入内存后,并不会立即把逻辑地址转换为物理地址,而是把地址转换推迟到程序真正要执行时才进行。因此装入内存后所有的地址依然是逻辑地址。这种方式需要一个重定位寄存器的支持。

image-20201209113729323

采用动态重定位时允许程序在内存中发生移动

并且可将程序分配到不连续的存储区中;在程序运行前只需装入它的部分代码即可投入运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享,可以向用户提供一个比存储空间大得多的地址空间。

链接的三种方式

  1. 静态链接:在程序运行之前,先将各目标模块及它们所需的库函数连接成一个完整的可执行文件(装入模块),之后不再拆开。
  2. 装入时动态链接:将各目标模块装入内存时,边装入边链接的链接方式
  3. 运行时动态链接:在程序执行中需要该目标模块时,才对它进行链接。其优点时便于修改和更新,便于实现对目标模块的共享。

内存管理的概念

操作系统作为系统资源的管理者,当然也需要对内存进行管理

  1. 操作系统复杂内存空间的分配和回收
  2. 操作系统需要提供某种技术从逻辑上对内存空间进行扩充
  3. 操作系统需要提供地址转换功能,复杂程序的逻辑地址与物理地址的转换
  4. 操作系统需要提供内存保存功能,保证各进程在各自存储空间内运行,互不干扰

内存保护

保证各进程在自己的内存空间内运行,不会越界访问。

内存保护可采用两种方法:

  • 方法一:在CPU中设置一对上、下限寄存器,存放进程的上、下限地址。进程的指令要访问某个地址时,CPU检查是否越界。
  • 方法二:采用重定位寄存器(又称基址寄存器)和界地址寄存器(又称限长寄存器)进行越界检查。重定位寄存器中存放的是进程的起始物理地址。界地址中存放的是进程的最大逻辑地址。

覆盖技术

用来解决“程序大小超过物理内存总和”的问题

覆盖技术的思想:将程序分为多个段(多个模块),常用的段常驻内存,不常用的段在需要时调用内存。

内存中分为一个“固定区”若干个“覆盖区”

需要常驻内存的段放在“固定区”中,调入后就不再调出(除非运行结束)

不常用的段放在“覆盖区”,需要用到时调入内存,用不到时调出内存。

image-20201209121752017

必须由程序员声明覆盖结构,操作系统完成自动覆盖。缺点:对用户不透明,增加了用户编程负担。

交换技术

交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些已具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)

image-20201209122109004

中级调度(内存调度):就是要决定将哪个处于挂起状态的进程重新调入内存。

暂时换出外存等待的进程状态为挂起状态(挂起态,suspend)

挂起态又可以进一步细分为就绪挂起、阻塞挂起两种状态。

应该在外存的什么位置保存被换出的进程?什么时候应该交换?应该换出哪些进程?

  1. 具有对换功能的操作中,通常把磁盘空间分为文件区对换区两部分。文件区主要用于存放文件,主要追求存储空间的利用率,因此对文件区空间的管理采用离散分配方式;对换区空间只占磁盘空间的小部分,被换出的进程数据就存放在对换区。由于兑换的速度直接影响到系统的整体速度,因此对换区空间的管理主要追求换入换出速度,因此通常对换区采用连续分配方式。总之,对换区的I/O速度比文件区的更快。
  2. 交换通常在许多进程运行且内存吃紧时进行,而系统负荷降低就暂停。例如:在发现许多进程运行时经常发生缺页,就说明内存紧张,此时可以换出一些进程;如果缺页率明显下降,就可以暂停换出。
  3. 可优先换出阻塞进程;可换出优先级低的进程;为了防止优先级低的进程在被调入内存后很快又被换出,有的系统还会考虑进程在内存的驻留时间...

注意:PCB会常驻内存,不会被换出外存)

连续分配管理方式

单一连续分配

在单一连续分配方式中,内存被分为系统区用户区

系统区通常位于内存的低地址部分,用于存放操作系统相关数据;用户区用于存放用户进程相关数据。

内存中只能由一道用户程序,用户程序独占整个用户区空间。

image-20201209165554462

优点:实现简单;无外部碎片;可以采用覆盖技术扩充内存;不一定需要采取内存保护(eg:早期的PC操作系统MS-DOS)

缺点:只能用于单用户、单任务的操作系统中;有内部碎片;存储器利用率极低。

固定分区分配

20世纪60年代出现了多道程序的系统,为了能在内存中装入多道程序,且这些程序之间又不会相互干扰,于是将整个用户空间划分为若干个固定大小的分区,在每个分区中只装入一道作业,这样就形成了最早的、最简单的一种可运行多道程序的内存管理方式。

分区大小相等:缺乏灵活性,但是很适合用于用一台计算机控制多个相同对象的场合(比如:钢铁厂有n各相同的炼铜炉,就可把内存分为n各大小相等的区域存放n各炼钢炉控制程序)

分区大小不等:增加了灵活性,可以满足不同大小的进程需求。根据常在系统中运行的作业大小情况进行划分(比如:划分多个小分区、适量中等分区、少量打分区)

操作系统需要建立一个数据结构--分区说明表,来实现各个分区的分配与回收。每个表项对应一个分区,通常按分区大小排列。每个表项包括对应分区的大小、起始地址、状态(是否已分配)。

image-20201209170620611

当某用户程序要装入内存时,由操作系统内核程序根据用户程序大小检索该表,从中找到一个能满足大小的、未分配的分区,将之分配给该程序,然后修改状态为“已分配”。

优点:实现简单,无外部碎片

缺点:a.当用户程序太大时,可能所有的分区都不能满足需求,此时不得不采用覆盖技术来解决,但这又会降低性能;b.会产生内部碎片,内存利用率低。

动态分区分配

动态分区分配又称为可变分区分配。这个分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的小大和数目是可变的。

image-20201209171640209

两种常用的数据结构:

  • 空闲分区表:每个空闲分区对应一个表项。表项中包含分区号、分区大小、分区其实地址等信息。
  • 空闲分区链:每个分区的其实部分和末尾部分分别设置前向指针和后向指针。起始部分处还可记录分区大小等信息。

动态分区分配没有内部碎片、但是有外部碎片

内部碎片,分配给某进程的内存区域中,如果有些部分没有用上。

外部碎片,是指内存中的某些空闲分区由于太小而难以利用。

如果内存中空闲空间的总和本来可以满足某进程的要求,但由于进程需要的是一整块连续的内存空间,因此这些"碎片"不能满足进程的需求。

可以通过紧凑技术来解决外部碎片。

动态分区分配算法

首次适应算法

算法思路:每次都从低地址开始查找,找到第一个能满足大小的空闲分区。

如何实现:空闲分区以地址递增的次序排列。每次分配内粗时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

最佳适应算法

算法思路:由于动态分区分配是一种连续分配方式,为各进程分配的空间必须是连续的一整片区域。因此为了保证当"大进程"到来时能有连续的大片空间,可能尽可能多地留下大片的空闲区,即优先使用更小的空闲区。

如何实现:空闲分区按容量递增次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

缺点:每次都选最小的分区进行分配,会留下越来愈多的、很小的、难以利用的内存块。因此这种方法会产生很多的外部碎片。

最坏适应算法

又称最大适应算法(Largest Fit)

算法思想:为了解决最佳适应算法的问题--即留下难以利用的小碎片,可以在每次分配时优先使用最大的连续空闲区,这样分配后剩余的空闲区就不会太小,更方便使用。

如何实现:空闲分区按容量递减次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

缺点:每次都选最大的分区进行分配,虽然可以让分配后留下的空闲区更大,更可用,但是这种方式会导致较大的连续空闲区被迅速用完。如果之后有“大进程”到达,就没有内存分区可用了。

邻近适应算法

算法思想:首次适应算法每次都从链头开始查找的。这可能会导致低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。如果每次都从上次查找结束的位置开始检索,就能解决上述问题。

如何实现:空闲分区以地址递增的顺序排列(可排成一个循环链表)。每次分配内存时从上次查找结束的位置开始查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

首次适应算法每次都要从头查找,每次都需要检索低地址的小分区。但是这种规则也决定了当低地址部分有更小的分区可以满足需求时,会更有可能用到低地址部分的小分区,也会更有可能把高地址部分的大分区保留下来(最佳适应算法的优点)

邻近适应算法的规则可能会导致无论低地址、高地址部分的空闲分区都有相同的概率被使用,也就导致了高地址部分的大分区更可能被使用,划分为小分区,最后导致无大分区可用(最大适应算法的缺点)

算法 算法思想 分区排列顺序 优点 缺点
首次适应 从头到尾找适合的分区 空闲分区以地址递增次序排列 综合看性能最好。算法开销小,回收分区后一般不需要对空闲分区队列重新排序
最佳适应 优先使用更小的分区,以保留更多大分区 空闲分区以容量递增次序排列 会由更多的大分区被保留下来,更能满足大进程需求 会产生很多太小的、难以利用的碎片;算法开销大,回收分区后可能需要对空闲分区队列重新排序
最坏适应 优先使用更大的分区,以防止产生太小的不可用的分区 空闲分区以容量递减次序排列 可以减少难以利用的小碎片 大分区容易被用完,不利于大进程;算法开销大(原因同上)
邻近适应 由首次适应演变而来,每次从上次查找结束位置开始查找 空闲分区以地址递增次序排列(可排列称循环链表) 不用每次都从低地址的小分区开始检索。算法开销小(原因同首次适应算法) 会使高地址的大分区也被用完

基本分页存储管理

考虑支持多道程序的两种连续分配方式:

  1. 固定分区分配:缺乏灵活性,会产生大量的内部碎片,内存的利用率很低。
  2. 动态分区分配;会产生很多外部碎片,虽然可以用"紧凑"技术来处理,但是”紧凑“的时间代价很高。

基于这一思想,产生了”非连续分配方式“,或者称为”离散分配方式“

分页存储管理的基本概念

将内存空间分为一个个大小相等的分区(比如:每个分区4KB),每个分区就是一个”页框“、”内存块“、"物理块"。每个页框有一个编号,即“页框号”(或者“内存块号”、“页帧号”、“物理块号”)页框号从0开始

将用户进程的地址空间也分为与页框大小相等的一个个区域,称为“”或“页面”。每个页面也有一个编号,即“页号”,页号也是从0开始

(注:进程的最后一个页面可能没有一个页框那么大。因此,页框不能太大,否则可能产生过大的内部碎片

操作系统以页框为单位为各个进程分配内存空间。进程的每个页面分别放入一个页框中。也就是说,进程的页面与内存的页框一一对应的关系。

各个页面不必连续存放,也不必按先后顺序来,可以放到不相邻的各个页框中。

如何实现地址的转换

  1. 要算出逻辑地址对应的页号\(页号=逻辑地址/页面地址(取除发的整数部分)\)
  2. 要知道该页对应页面在内存中的起始地址
  3. 要算出逻辑地址在页面内的“偏移量”\(页面偏移量=逻辑地址 \% 页面长度(取除法的余数部分)\)
  4. 物理地址=页面始址+页面偏移量(操作系统需要用某种数据结构记录进程各个页面的起始位置)

结论:如果每个页面大小为\(2^kB\),用二进制数表示逻辑地址,则末尾K位即为页面偏移量,其余部分就是页号

因此,如果让每个页面的大小为2的整数幂,计算机就可以很方便地得出一个逻辑地址对应的页号和页内偏移量。

分页存储管理的逻辑地址结构如下所示:

31-----------------------12 11----------------------0
页号P 页内偏移量W

地址结构包含两个部分:前一部分为页号,后一部分为页内偏移量。

如果有K位表示“页内偏移量”,则说明该系统中一个页面的大小是\(2^k\)个内存单元

如果有M位表示“页号”,则说明在该系统中,一个进程最多允许有\(2^M\)个页面

页表

为了能知道进程的每个页面在内存中存放的位置,操作系统要为每个进程建立一张页表。

image-20201209212927725

  1. 一个进程对应一张页表
  2. 进程的每一页对应一个页表项
  3. 每个页表项由“页号”和“块号”组成。
  4. 页表记录进程页面和实际存放的内存块之间的对应关系

基本地址变换机构

基本地址变换机构可以借助进程的页表将逻辑地址转换为物理地址。

通常会在系统中设置一个页表寄存器(PTR),存放页表在内存中的起始地址F页表长度M

进程未执行时,页表的始址和页表长度放在进程控制块(PCB)中,当进程被调度时,操作系统内核会把它们放到页表寄存器中。

image-20201209215619567

注意:页面大小是2的整数幂

设页面大小为L,逻辑地址A到物理地址E的变换过程如下:

  1. 计算页号P和页内偏移量W
  2. 比较页号P和页表长度M,若\(P\ge M\),则产生越界中断,否则继续执行。(注意:页号是从0开始的,而页表长度至少是1,因此P=M时也会越界
  3. 页表中页号P对应的页表项地址=页表起始地址F+页号P*页表项长度,取出该页表项内容b,即为内存块号。(注意区分页表项长度、页表长度、页面大小的区别。页表长度指的是这个页表中总共有几个页表项,即总共有几个页;页表项长度指的是每个页表项占多大的存储空间;页面大小指的是一个页面占多大的存储空间)
  4. 计算\(E=b*L+W\),用得到的物理地址E去访存。(如果内存块号,页面偏移量是用二进制表示的,那么把二者拼接起来就是最终的物理地址)

具有快表的地址变换机构

局部性原理

时间局部性:如果执行了程序中某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)

空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的)

引入快表后,地址的变换过程

image-20201209222307045

  1. CPU给出逻辑地址,由某个硬件算得页号、页内偏移量,将页号与快表中的所有页号进行比较。
  2. 如果找到匹配的页号,说明要访问的页表项在快表中有副本,则直接从中取出该页对应的内存块号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。因此,若快表命中,则访问某个逻辑地址仅需一次访存即可。
  3. 如果没有找到匹配的页号,则需要访问内存中的页表,找到对应页表项,得到页面存放的内存块号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。因此,若快表未命中,则访问某个逻辑地址需要两次访存注意:在找到页表项后,应同时将其存入快表,以便后面可能的再次访问。但若快表已满,则必须按照一定的算法对旧的页表项进行替换)

由于查询快表的速度比查询页表的速度快很多,因此只要快表命中,就可以节省很多时间。因为局部性原理,一般来说快表的命中率可以达到90%以上。

地址变换过程 访问一个逻辑地址的访存次数
基本地址变换机构 1.算页号、页内偏移量
2.检查页号合法性
3.查页表,找到页面存放的内存块号
4.根据内存块号与页内偏移量得到物理地址
5.访问目标内存单元
两次访存
具有快表的地址变换机构 1.算页号、页内偏移量
2.检查页号合法性
3.查快表。若命中,即可知道页面存放的内存块号,可直接进行5;若未命中则进行4
4.查页表,找到页面存放的内存块号,并且将页表项复制到快表中
5.根据内存块号与页内偏移量得到物理地址
6.访问目标内存单元
快表命中,只需一次访存;
快表未命中,需要两次访存。

两级页表

问题一:页表必须连续存放,因此当页表很大时,需要占用很多个连续的页框。

问题二:没有必要让整个页表常驻内存,因为进程在一段时间内可能只需要访问某几个特定的页面。

两级页表的原理、地址结构

31.....2 21....12 11...0
一级页号 二级页号 页内偏移量

image-20201209225322911

地址变换

  1. 按照地址结果按逻辑地址拆分成三部分
  2. 从PCB中读出页目录表始址,再根据一级页号查页目录表,找到下一级页表在内存中的存放的位置
  3. 根据二级页号查表,找到最终想访问的内存块号
  4. 结合页内偏移量得到物理地址

需要注意的几个细节:

  1. 若采用多级页表机制,则各级页表的大小不能超过一个页面

    image-20201209225902511

  2. 两级页表的访存次数分析(假设没有快表机构)

    第一次访存:访问内存中的页目录表

    第二次访存:访问内存中的二级页表

    第三次访存:访问目标内存单元

基本分段存储管理

进程的地址空间:按照程序自身的逻辑关系划分为若干段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址

内存分配规则:以段为单位进行分配,每个段在内存中占据连续空间,但各段之间可以不相邻

由于是按逻辑功能模块划分,用户编程更方便,程序的可读性更高

分段

分段系统的逻辑地址结构由段号(段名)和段内地址(段内偏移量)所组成。

31.......16 15.....0
段号 段内地址

段号的位数决定了每个进程最多可以分几个段,段内地址位数决定了每个段的最大长度是多少

段表

程序分多个段,各段离散地装入内存,为了保证程序能正常运行,就必须能从物理内存中找到各个逻辑段的存放位置。为此,需为每个进程建立一张段映射表,简称"段表"。

image-20201210202901631

  1. 每个段对应以恶搞段表项,其中记录了该段在内存中的起始位置(又称“基址”)和段的长度
  2. 各个段表项的长度是相同的。例如:某系统按字节寻址,采用分段存储管理,逻辑地址结构为(段号16位,段内地址16位),因此用16位即可表示最大段长。物理内存大小为4GB(可用32位表示整个物理内存地址空间)。因此,可以让每个段表项占16+32=48位,即6B。由于段表项长度相同,因此段号可以是隐含的,不占存储空间。若段表存放的起始地址为M,则K号段对应的段表项存放的地址为M+K*6。

地址变换

image-20201210204238647

  1. 由逻辑地址得到段号、段内地址
  2. 段号与段表寄存器的段长度比较,检查是否越界
  3. 由段表适址、段号找到对应段表项
  4. 根据段表中记录的段长、检查段内地址是否越界
  5. 由段表中的"基址+段内地址"得到最终的物理地址
  6. 访问目标单元

分段、分页管理对比

信息的物理单位。分页的主要目的是为了实现离散分配,提高内存利用率。分页仅仅是系统管理上的需要,完全是系统行为,对用户是不可见的。

信息的逻辑单位。分页的主要目的是更好地满足用户需求。一个段通常包含着一组属于一个逻辑模块的信息。分段对用户是可见的,用户编程时需要显式地给出段名。

页的大小固定且由系统决定。段的长度却不固定,决定于用户编写的程序。

分页的用户进程地址空间是一维的,程序员只需给出一个记忆符即可表示一个地址。

分段的用户进程地址空间是二维的,程序员在标识一个地址时,既要给出段名,也要给出段内地址。

分段比分页更容易实现信息的共享和保护。不能被修改的代码称为纯代码可重入代码(不属于临界资源),这样的代码是可以共享的。可修改代码是不能共享的。

访问一个逻辑地址需要几次访存?

分页(单级页):第一次访存--查内存中的页表,第二次访存--访问目标内存单元。总共两次访存

分段:第一次访存--查内存的段表,第二次访存--访问目标内存单元。总共两次访存

段页式管理方式

分页、分段的优缺点分析

优点 缺点
分页管理 内存空间利用率高,不会产生外部碎片,只会有少量的页内碎片 不方便按照逻辑模块实现信息的共享和保护
分段管理 很方便按照逻辑模块实现信息的共享和保护 如果段长过大,为其分配很大的连续空间会很不方便。另外,段式管理会产生外部碎片

段页式管理

image-20201210210457452

逻辑地址结构

段页式系统的逻辑地址结构由段号、页号、页内地址(页内偏移量)组成。

31....16 15....12 11.....0
段号 页号 页内偏移量

段号的位数决定了每个进程最多可以分几个段

页号位数决定了每个段最大有多少页

页内偏移量决定了页面大小、内存块大小是多少

"分段"对用户是可见的,程序员编程时需要显式地给出段号、段内地址。而将各段"分页"对用户是不可见的。系统会根据段内地址自动划分页号和页内偏移量。因此段页式管理的地址结构式二维

段表、页表

image-20201210211157406

每个段对应一个段表项,每个段表项由段号、页表长度、页表存放块号(页表起始地址)组成。每个段表项长度相等,段号式隐含的。

每个页面对应一个页表项,每个页表项由页号、页面存放的内存块号组成。每个页表项长度相等,页号是隐含的。

地址变换

image-20201210211659922

虚拟内存

传统存储管理方式的特征、缺点

image-20201210212244193

一次性:作业必须一次性全部装入内存后才能开始运行。这回造成两个问题:①作业很大时,不能全部装入内存,导致大作业无法运行;②当大量作业要求运行时,由于内存无法容纳所以作业,因此只有少量作业能运行,导致多道程序并发度下降

驻留性:一旦作业被装入内存,就会一直驻留在内存中,直到作业运行结束。事实上,在一个时间段内,只需要访问作业的一小部分数据即可正常运行,这就导致了内存中会驻留大量的、暂时用不到的数据,浪费了宝贵的内存资源。

局部性原理

时间局部性:如果执行了程序中某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)

空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的,并且程序的指令也是顺序地在内存中存放的)

高速缓冲技术的思想:将近期会频繁访问到的数据放到更告诉的存储器中,暂时用不到的数据放在更低速存储器中。

虚拟内存的定义和特征

基于局部性原理,在程序装入时,可以将程序中很快会用到的部分装入内存,暂时用不到的部分留在外存,就可以让程序开始执行。

在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。

若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存

在操作系统的管理下,在用户看来似乎有一个比实际内存大得多的内存,这就是虚拟内存

易混知识点:

虚拟内存的最大容量是由计算机的地址结构(CPU寻址范围)确定的

虚拟内存的实际容量=min(内存和外存容量之和,CPU寻址范围)

虚拟内存有以下三个主要特征:

  • 多次性:无需在作业运行时一次性全部装入内存,而是运行被分成多次调入内存。
  • 对换性:在作业运行时无需一直常驻内存,而是允许在作业运行过程中,将作业换入、换出。
  • 虚拟性:从逻辑上扩充了内存的容量,使用户看到的内存容量,远大于实际的容量。

实现虚拟内存技术

虚拟内存技术,运行一个作业多次调入内存。如果采用连续分配方式,会不方便实现。因此,虚拟内存的实现需要建立在离散分配的内存管理方式基础上。
image-20201210214816438

主要区别:在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。(操作系统要提供请求调页(或请求调段)功能)

若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。(操作系统要一共页面置换(或段置换)的功能)

请求分页管理方式

页表机制

image-20201210215547418

内存块号 状态位 访问字段 修改位 外存地址
.. 是否一调入内存 可记录最近被访问过几次,或记录上次访问的时间,供置换算法选择换出页面时参考 页面调入内存后是否被修改过 页面在外存中的存放位置

缺页中断机构

在请求分页系统中,每当要访问的页面不在内存时,便产生一个缺页中断,然后由操作系统的缺页中断程序处理中断

此时缺页的进程阻塞,放入阻塞队列,调页完成后再将其唤醒,放回就绪队列。

如果内存中有空闲块,则为进程分配一个内存块,将所缺页面装入该块,并修改页表中相应的页表项。

如果内存中没有空闲块,则由页面置换算法选择一个页面淘汰,若该页面在内存期间被修改过,则要将其写回外存。未修改过的页面不用写回外存。

缺页中断是因为当前执行的指令想要访问的目标页面未调入内存而产生的,因此属于内中断。

一条指令在执行期间,可能产生多次缺页中断

地址变换机构

请求分页存储管理与基本分页存储管理的主要区别:

在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。

若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存

新增的步骤:

  1. 请求调页(查到页表项时进行判断)
  2. 页面置换(需要调入页面,但没有空闲内存块时进行)
  3. 需要修改请求页表中新增的表项

image-20201210221647257

image-20201210221704774

补充细节:

  1. 只有“写指令”才需要修改“修改位”。并且,一般来说只需修改快表中的数据,只有要将快表项删除时才需要写回内存中的慢表。这样可以减少访存次数。
  2. 和普通的中断处理一样,缺页中断处理依然需要保留CPU现场。
  3. 需要用某种“页面置换算法”来决定一个换出页面
  4. 换入/换出页面都需要启动慢速的I/O操作,可见,如果换入/换出太频繁,会有很大的开销。
  5. 页面调入内存后,需要修改慢表,同时也需要将表项复制到快表中。

页面置换算法

最佳置换算法(OPT)

最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被访问的页面,这样可以保证最低的缺页率。

最佳置换算法可以保证最低的缺页率,但实际上,只有在进程执行的过程中才能知道接下来会访问到的是哪个页面。操作系统无法提前预判页面访问序列。因此,最佳置换算法是无法实现的

先进先出置换算法(FIFO)

先进先出置换算法(FIFO):每次选择淘汰的页面是最早进入内存的页面。

实现方法:把调入内存的页面根据调入的先后顺序排成一个队列,需要换出页面时选择队头页面接口。队列最大长度取决于系统为进程分配了多少个内存块。

Belady异常--当为进程分配的物理块数增大时,缺页次数不减反增的异常现象。

只有FIFO算法产生Belady异常。另外,FIFO算法虽然实现简单,但是该算法与进程实际运行时的规律不适应,因为先进入的页面也有可能最经常被访问。因此,算法性能差

最近最久未使用置换算法(LRU)

最近最久未使用置换算法(LRU,leat recently used):每次淘汰的页面是最近最久未使用的页面

实现方法:赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来经历的时间t。当需要淘汰一个页面时,选择现有页面中t值最大的,即最近最久未使用的页面。

在手动做题时,若需要淘汰页面,可以逆向检查此时在内存中的几个页面号。在逆向扫描过程中最后一个出现的页号就是要淘汰的页面

时钟置换算法(CLOCK)

最佳置换算法性能最好,但无法实现;先进先出置换算法实现简单,但算法性能差;最近最久未使用置换算法性能好,是最接近OPT算法性能的,但是实现起来需要专门的硬件支持,算法开销大。

时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU,Not Recently Used)

简单的CLOCK算法实现方法:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成一个循环队列。当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1 ,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描一定会有访问位为0的页面,因此简单的CLOCK算法选择一个淘汰页面最多会经过两轮扫描

改进型的时钟置换算法

简单的时钟置换算法仅考虑到一个页面最近是否被访问过。事实上,如果被淘汰的页面没有被修改过,就不需要执行I/O操作写回外存。只有被淘汰的页面被修改过时,才需要写回外存。

因此,除了考虑一个页面最近有没有被访问过之外,操作系统还应考虑页面有没有修改过。在其他条件都相同时,应优先淘汰没有修改过的页面,避免I/O操作。这既是改进型的时钟置换算法的思想。修改位=0,表示页面没有被修改过;修改位=1,表示页面被修改过。

为了方便讨论,用(访问位,修改位)的形式表示各页面状态。如(1,1)表示一个页面近期被访问过,且被修改过。

算法规则:将所有可能被置换的页面排成一个循环队列

第一轮:从当前位置开始扫描到第一个(0,0)的帧用于替换。本轮扫描不修改任何标志位。

第二轮:若第一轮扫描失败,则重新扫描,查找第一个(0,1)的帧用于替换。本轮将所有扫描过的帧访问位设为0。

第三轮:若第二轮扫描失败,则重新扫描,查找第一个(0,0)的帧用于替换。本轮扫描不修改任何标志位。

第四轮:若第三轮扫描失败,则重新扫描,查找第一个(0,1)的帧用于替换。

由于第二轮已将所有帧的访问位设为0,因此经过第三轮、第四轮扫描一定有一个帧被选中,因此改进型CLOCK置换算法选择一个淘汰页面最多会进行四轮扫描

总结

算法规则 优缺点
OPT 优先淘汰最长时间内不会被访问的页面 缺页率最小,性能最好;但无法实现
FIFO 优先淘汰最先进入内存的页面 实现简单;但性能很差,可能出现Belady异常
LRU 优先淘汰最近最久没访问的页面 性能很好;但需要硬件支持,算法开销大
CLOCK(NRU) 循环扫描各页面
第一轮淘汰访问位=0的,并将扫描过的页面访问位改为1。若第一轮没选中,则进行第二轮扫描。
实现简单,算法开销小;但未考虑页面是否被修改过。
改进型CLOCK(改进型NRU) 若用(访问位,修改位)的形式表述,则
第一轮:淘汰(0,0)
第二轮:淘汰(0,1),并将扫描过的页面访问位都置为0
第三轮:淘汰(0,0)
第四轮:淘汰(0,1)
算法开销较小,性能也不错

页面分配策略

页面分配、置换策略

驻留集:指请求分页存储管理中给进程分配的物理块的集合。

在采用了虚拟存储技术的系统中,驻留集大小一般小于进程的总大小。

若驻留集太小,会导致缺页频繁,系统要花大量的时间来处理缺页,实际用于进程推进的时间很少;驻留集太大,又会导致多道程序并发度下降,资源利用率降低。所以应该选择一个合适的驻留集大小。

固定分配:操作系统为每个进程分配一组固定数目的物理块,在进程运行期间不再改变。即,驻留集大小不变

可变分配:先为每个进程分配一定数目的物理块,在进程运行期间,可根据情况做适当的增加或减少。即,驻留集大小可变

局部置换:发生缺页时只能选进程自己的物理块进行置换

全局置换:可以将操作系统保留的空闲物理块分配给缺页进程,也可以将别的进程持有的物理块置换到外存,再分配给缺页进程。

局部置换 全局置换
固定分配 -
可变分配

注意:全局置换意味着一个进程拥有的物理块数量必然会改变,因此不可能是固定分配。

固定分配局部置换:系统为每个进程分配一定数量的物理块,在整个运行期间都不改变。若进程在运行中发生缺页,则只能从该进程在内存中的页面中选中一页换出,然后再调入需要的页面。这种策略的缺点:很难在刚开始就确定应为每个进程分配多少各物理块才算合理。(采用这种策略的系统可以根据进程大小、优先级、或是根据程序员给出的参数来确定为一个进程分配的内存块数)

可变分配全局置换:刚开始会为每个进程分配一定数量的物理块。操作系统会保持一个空闲物理块队列。当某进程发生缺页时,从空闲物理块中取出一块分配给该进程;若已无空闲物理块,则可选择一个未锁定的页面换出外存,再将该物理块分配给缺页的进程。采用这种策略时,只要某进程发生缺页,都将获得新的物理块,仅当空闲物理块用完时,系统才选择一个未锁定的页面调出。被选中调出的页可能是系统任何一个进程中的页,因此这个被选中的进程拥有的物理块会减少,缺页率会增加。

可变分配局部置换:刚开始会为每个进程分配一定数量的物理块。当某进程发送缺页时,只允许从该进程自己的物理块中选出一个进行换出外存。如果进程在运行中频繁地缺页,系统会为该进程多分配几个物理块,直至该进程缺页率趋势适当程度;反之,如果进程在运行中缺页率特别低,则可适当减少分配给该进程的物理块。

可变分配全局置换:只要缺页就给分配新物理块。

可变分配局部置换:要根据发生缺页的频率来动态地增加或减少进程的物理块。

何时调入页面

  1. 预调页策略:根据局部性原理,一次调入若干个相邻的页面可能比一次调入一个页面更高效。但如果提前调入的页面大多数都没被访问过,则又是低效的。因此可以预测不久之后可能访问到的页面,将它们预先调入内存,但目前预测成功率只有50%左右。故这种策略主要用于进程的首次调入,由程序员指出应该先调入哪些部分。
  2. 请求调页策略:进程在运行期间发现缺页时才将所缺页面调入内存。由这种策略调入的页面一定会被访问到,但由于每次只能调入一页,而每次调页都要磁盘I/O操作,因此I/O开销较大。

从何处调入页面

  1. 系统拥有足够的对换区空间:页面的调入、调出都是在内存与对换区之间进行,这样可以保证页面的调入、调出速度很快。在进程运行前,需将进程相关的数据从文件区复制到对换区。

    image-20201211140815367

  2. 系统缺少的足够的对换区空间:凡是不会被修改的数据都直接从文件区调入,由于这些页面不会被修改,因此换出时不必写回磁盘,下次需要时再从文件区调入即可。对于可能被修改的部分,换出时需写回磁盘对换区,下次需要时再从对换区调入。

    image-20201211141008325

  3. UNIX方式:运行之前进程有关的数据全部放在文件区,故未使用过的页面,都可从文件区调入。若被使用过的页面需要换出,则写回对换区,下次需要时从对换区调入。

    image-20201211141147050

抖动(颠簸)现象

刚刚换出的页面马上又要换出内存,刚刚换入的页面马上又要换出外存,这种频繁的页面调度行为称为抖动,或颠簸。产生抖动的主要原因时进程频繁访问的页面数目高于可用的物理块数(分配给进程的物理块不够

为进程分配的物理块太少,会使进程发生抖动现象。为进程的物理块太多,又会降低系统整体的并发度,降低某些资源的利用率。

工作集

工作集:旨在某段时间间隔里,进程实际访问页面的集合

工作集大小可能少于窗口尺寸,实际应用中,操作系统可以统计进程的工作集大小,根据工作集大小给进程分配若干个内存块。如:窗口尺寸为4,经过一段时间的检测发现某进程的工作集最大为3,那么说明该进程有很好的局部性,可以给这个进程分配3个以上的内存块即可满足进程的运行需要。

一般来说,驻留集大小不能小于工作集大小,否则进程运行过程中将频繁缺页。

拓展:基于局部性原理可知,进程在一段时间内访问的页面与不久之后会访问的页面是有相关性的。因此,可以根据进程近期访问的页面集合(工作集)来设计一种页面置换算法--选中一个不在工作集中的页面进行淘汰。

posted @ 2020-12-15 17:40  Ligo丶  阅读(691)  评论(0编辑  收藏  举报