Transformer代码解读

Scaled Dot Product Attention:

              

实现如图的操作,令Q乘以K的转置,如果需要mask,乘以Mask矩阵,再做Softmax操作,得到注意力权重矩阵,最后乘以V获得self-attention的输出。

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature    # 即根号dk
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):

        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)    # 将原矩阵乘以一个很小的数,即起到遮盖的目的

        attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn

 

位置编码Positional Encoding:

 位置编码是直接加在embedding后的输入向量中的

class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()

        # Not a parameter
        self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        ''' Sinusoid position encoding table '''
        # TODO: make it with torch instead of numpy

        def get_position_angle_vec(position):
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)#(1,N,d)

    def forward(self, x):
        # x(B,N,d)
        return x + self.pos_table[:, :x.size(1)].clone().detach()

 

多头注意力MultiHead Attention:

                

 如图所示,多头注意力机制就是将输入送进多个attention中,各自独立的处理数据,将各自的输出进行concatenate。

class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)


    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q


        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)   # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        #q (sz_b,n_head,N=len_q,d_k)
        #k (sz_b,n_head,N=len_k,d_k)
        #v (sz_b,n_head,N=len_v,d_v)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)

        #q (sz_b,len_q,n_head,N * d_k)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn

 

前向传播Feed Forward Network:

            

class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid) # position-wise
        self.w_2 = nn.Linear(d_hid, d_in) # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):

        residual = x

        x = self.w_2(F.relu(self.w_1(x)))
        x = self.dropout(x)
        x += residual

        x = self.layer_norm(x)

        return x

 

编码器EncoderLayer:

将上面的类组成一个编码器,结构如下图所示

            

class EncoderLayer(nn.Module):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask)
        enc_output = self.pos_ffn(enc_output)
       
    
return enc_output, enc_slf_attn

 

解码器DecoderLayer:

将上面的类组成一个解码器,如图所示

            

class DecoderLayer(nn.Module):
    ''' Compose with three layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(DecoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.enc_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, dec_input, enc_output,
            slf_attn_mask=None, dec_enc_attn_mask=None):
        dec_output, dec_slf_attn = self.slf_attn(dec_input, dec_input, dec_input, mask=slf_attn_mask)
        dec_output, dec_enc_attn = self.enc_attn(dec_output, enc_output, enc_output, mask=dec_enc_attn_mask)
        dec_output = self.pos_ffn(dec_output)
        
    return dec_output, dec_slf_attn, dec_enc_attn

 

编码器部分Encoder:

class Encoder(nn.Module):
    ''' A encoder model with self attention mechanism. '''

    def __init__(
            self, n_src_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
            d_model, d_inner, pad_idx, dropout=0.1, n_position=200):

        super().__init__()

        self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
        self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.ModuleList([
            EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, src_seq, src_mask, return_attns=False):

        enc_slf_attn_list = []

        # -- Forward
        
        enc_output = self.dropout(self.position_enc(self.src_word_emb(src_seq)))
        enc_output = self.layer_norm(enc_output)

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
            enc_slf_attn_list += [enc_slf_attn] if return_attns else []

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output

 

解码器部分Decoder:

class Decoder(nn.Module):
    ''' A decoder model with self attention mechanism. '''


    def forward(self, trg_seq, trg_mask, enc_output, src_mask, return_attns=False):

        dec_slf_attn_list, dec_enc_attn_list = [], []

        # -- Forward
        dec_output = self.dropout(self.position_enc(self.trg_word_emb(trg_seq)))
        dec_output = self.layer_norm(dec_output)

        for dec_layer in self.layer_stack:
            dec_output, dec_slf_attn, dec_enc_attn = dec_layer(
                dec_output, enc_output, slf_attn_mask=trg_mask, dec_enc_attn_mask=src_mask)
            dec_slf_attn_list += [dec_slf_attn] if return_attns else []
            dec_enc_attn_list += [dec_enc_attn] if return_attns else []

        if return_attns:
            return dec_output, dec_slf_attn_list, dec_enc_attn_list
        return dec_output

 

整体结构Transformer

class Transformer(nn.Module):
    ''' A sequence to sequence model with attention mechanism. '''

    def __init__(
            self, n_src_vocab, n_trg_vocab, src_pad_idx, trg_pad_idx,
            d_word_vec=512, d_model=512, d_inner=2048,
            n_layers=6, n_head=8, d_k=64, d_v=64, dropout=0.1, n_position=200,
            trg_emb_prj_weight_sharing=True, emb_src_trg_weight_sharing=True):

        super().__init__()

        self.src_pad_idx, self.trg_pad_idx = src_pad_idx, trg_pad_idx

        self.encoder = Encoder(
            n_src_vocab=n_src_vocab, n_position=n_position,
            d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
            n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
            pad_idx=src_pad_idx, dropout=dropout)

        self.decoder = Decoder(
            n_trg_vocab=n_trg_vocab, n_position=n_position,
            d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
            n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
            pad_idx=trg_pad_idx, dropout=dropout)

        self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p) 

        assert d_model == d_word_vec, \
        'To facilitate the residual connections, \
         the dimensions of all module outputs shall be the same.'

        self.x_logit_scale = 1.
        if trg_emb_prj_weight_sharing:
            # Share the weight between target word embedding & last dense layer
            self.trg_word_prj.weight = self.decoder.trg_word_emb.weight
            self.x_logit_scale = (d_model ** -0.5)

        if emb_src_trg_weight_sharing:
            self.encoder.src_word_emb.weight = self.decoder.trg_word_emb.weight


    def forward(self, src_seq, trg_seq):

        src_mask = get_pad_mask(src_seq, self.src_pad_idx) # Encoder的Mask,一列Bool值,用于把标点mask掉
        trg_mask = get_pad_mask(trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq)  # 防止预测时提前知道下一部分的信息

        enc_output, *_ = self.encoder(src_seq, src_mask)
        dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask)
        seq_logit = self.trg_word_prj(dec_output) * self.x_logit_scale

        return seq_logit.view(-1, seq_logit.size(2))

 

Mask的生成:

def get_pad_mask(seq, pad_idx):
    return (seq != pad_idx).unsqueeze(-2)


def get_subsequent_mask(seq):
    ''' For masking out the subsequent info. '''
    sz_b, len_s = seq.size()
    subsequent_mask = (1 - torch.triu(
        torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
    return subsequent_mask

 

posted @ 2021-12-29 13:46  Liang-ml  阅读(329)  评论(0)    收藏  举报