证明 $\sum_{k=0}^{n} C_{k}^m = C_{m+1}^{n+1} $
前置芝士:证明 \(C(m,n)=C(m,n-1)+C(m-1,n-1)\)
\(∵C(m,n)=C(m,n-1)+C(m-1,n-1)\)
\(∴C(m+1,n+1)=C(m+1,n)+C(m,n)\)
证明 $\sum_{k=0}^{n} C_{k}^m = C_{m+1}^{n+1} $
\(\sum_{k=0}^{n} C_{k}^m = C_{m}^{m}+C_{m+1}^{m}+\dots+C_{n}^{m}\)
\(=(C_{m+1}^{m+1}+C_{m+1}^{m})+\dots+C_{n}^{m}\)
\(=(C_{m+2}^{m+1}+C_{m+2}^{m})+\dots+C_{n}^{m}\)
合并。。。合并
\(=C_{n+1}^{m+1}\)