类欧几里得小结

前言:网上看了一下这个知识点,最基本的那个式子会了之后,自己推了剩下的两个式子,发现其实还是很好推的


 

 前置公式:

   $x < \left \lfloor \frac{n}{y} \right \rfloor \Leftrightarrow x < \left \lceil \frac{n-y+1}{y} \right \rceil$ 

   $x < \left \lceil \frac{n}{y} \right \rceil \Leftrightarrow x * y < n$

   $x * y > n \Leftrightarrow x > \left \lfloor \frac{n}{y} \right \rfloor$

 

类欧几里得:

     给定 $n$, $a$, $b$, $c$,求下列三个算式的值

  $f(n, a, b, c) = \sum_{i=0}^n\left \lfloor \frac{a*i+b}{c} \right \rfloor$

  $g(n, a, b, c) = \sum_{i=0}^n i * \left \lfloor  \frac{a*i+b}{c} \right \rfloor$

  $h(n, a, b, c) = \sum_{i=0}^n (\left \lfloor  \frac{a*i+b}{c} \right \rfloor)^2$

 

本文中作如下约定:

  $m=\left \lfloor \frac{a*n+b}{c} \right \rfloor$

 

求$f(n, a, b, c)$

  $Case\ 1$:当$a \geqslant c \ ||\ b \geqslant c$时 $$ \begin{align*}f(n, a, b, c) &= \sum_{i=0}^n\left \lfloor \frac{a*i+b}{c} \right \rfloor \\ &=\sum_{i=0}^n(\left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor + \left \lfloor \frac{a}{c} \right \rfloor*i + \left \lfloor \frac{b}{c} \right \rfloor ) \\ &= \sum_{i=0}^n\left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor + \left \lfloor \frac{a}{c} \right \rfloor \sum_{i=0}^ni + \left \lfloor \frac{b}{c} \right \rfloor * (n + 1) \\ &=f(n, a\%c, b\%c, c) + \left \lfloor \frac{a}{c} \right \rfloor * \frac{n*(n+1)}{2} + \left \lfloor \frac{b}{c} \right \rfloor * (n + 1) \end{align*}$$ 

  $Case\ 2$:当$a < c \ \&\&\  b < c \ \&\&\ a \neq 0$时 $$\begin{align*}f(n, a, b, c) &= \sum_{i=0}^n\left \lfloor \frac{a*i+b}{c} \right \rfloor \\ &=\sum_{i=0}^n \sum_{j=0}^{\left \lfloor \frac{a*i+b}{c} \right \rfloor - 1}1 \\ &=\sum_{j=0}^{m-1} \sum_{i=0}^n[j<\left \lfloor \frac{a*i+b}{c} \right \rfloor] \\ &= \sum_{j=0}^{m-1}\sum_{i=0}^n[j<\left \lceil \frac{a*i+b-c+1}{c} \right \rceil] \\ &= \sum_{j=0}^{m-1}\sum_{i=0}^n[c*j < a*i+b-c+1] \\&= \sum_{j=0}^{m-1}\sum_{i=0}^n[a*i > c*j-b+c-1] \\ &=\sum_{j=0}^{m-1} \sum_{i=0}^n[i>\left \lfloor \frac{c*j-b+c-1}{a} \right \rfloor]  \\ &= \sum_{j=0}^{m-1}(n-\left \lfloor \frac{c*j-b+c-1}{a} \right \rfloor)\\ &= n*m-f(m-1,c,-b+c-1,a)\end{align*}$$  

  $Case\ 3$:当$a < c \ \&\&\  b < c \ \&\&\ a = 0$时 $$f(n, a, b, c) = 0$$

 

记$A(j)=\left \lfloor \frac{c*j-b+c-1}{a} \right \rfloor$

下面推导过程中与上面相似的步骤会省略

 

求$g(n, a, b, c)$

  $Case\ 1$:当$a \geqslant c \ ||\ b \geqslant c$时 $$ \begin{align*}g(n, a, b, c)&= \sum_{i=0}^n i*\left \lfloor \frac{a*i+b}{c} \right \rfloor \\ &=\sum_{i=0}^n(i*\left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor + \left \lfloor \frac{a}{c} \right \rfloor*i^2 + \left \lfloor \frac{b}{c} \right \rfloor * i ) \\ &= \sum_{i=0}^n i * \left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor + \left \lfloor \frac{a}{c} \right \rfloor \sum_{i=0}^n i^2 + \left \lfloor \frac{b}{c} \right \rfloor \sum_{i=0}^n i \\ &=g(n, a\%c, b\%c, c) + \left \lfloor \frac{a}{c} \right \rfloor * \frac{n*(n+1)*(2n+1)}{6} + \left \lfloor \frac{b}{c} \right \rfloor * \frac{n*(n+1)}{2}\end{align*} $$

 

  $Case\ 2$:当$a < c \ \&\&\  b < c \ \&\&\ a \neq 0$时 $$ \begin{align*}g(n, a, b, c) &= \sum_{i=0}^ni*\left \lfloor \frac{a*i+b}{c} \right \rfloor \\ &=\sum_{i=0}^n \sum_{j=0}^{\left \lfloor \frac{a*i+b}{c} \right \rfloor - 1}i \\ &=\sum_{j=0}^{m-1} \sum_{i=0}^ni*[j<\left \lfloor \frac{a*i+b}{c} \right \rfloor] \\ &=\sum_{j=0}^{m-1} \sum_{i=0}^ni*[i>\left \lfloor \frac{c*j-b+c-1}{a} \right \rfloor]  \\ &= \sum_{j=0}^{m-1}(\frac{n*(n+1)}{2} -\frac{A(j)*(A(j)+1)}{2})\\ &= \frac{m*n*(n+1)}{2}- \frac{1}{2}\sum_{j=0}^{m-1}(A(j))^2- \frac{1}{2}\sum_{j=0}^{m-1}A(j)\\ &=\frac{m*n*(n+1)}{2}-\frac{1}{2}h(m-1, c, -b+c-1,a)-\frac{1}{2}f(m-1, c,-b+c-1, a)\end{align*}$$  

  $Case\ 3$:当$a < c \ \&\&\  b < c \ \&\&\ a = 0$时 $$g(n, a, b, c) = 0$$

 

求$h(n, a, b, c)$ 

  $Case\ 1$:当$a \geqslant c \ ||\ b \geqslant c$时 $$\begin{align*}h(n, a, b, c) &= \sum_{i=0}^n(\left \lfloor \frac{a*i+b}{c} \right \rfloor)^2 \\ &=\sum_{i=0}^n(\left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor + \left \lfloor \frac{a}{c} \right \rfloor*i + \left \lfloor \frac{b}{c} \right \rfloor )^2 \\ &= \sum_{i=0}^n(\left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor)^2 +2\left \lfloor \frac{a}{c} \right \rfloor\sum_{i=0}^ni \left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor +2\left \lfloor \frac{b}{c} \right \rfloor\sum_{i=0}^n \left \lfloor \frac{(a\%c)*i+(b\%c)}{c} \right \rfloor+ (\left \lfloor \frac{a}{c} \right \rfloor)^2 \sum_{i=0}^ni^2 + (\left \lfloor \frac{b}{c} \right \rfloor)^2 *(n+1)+2\left \lfloor \frac{a}{c} \right \rfloor\left \lfloor \frac{b}{c} \right \rfloor \sum_{i=0}^ni \\ &= h(n, a\%c, b\%c, c)+2\left \lfloor \frac{a}{c} \right \rfloor g(n,a\%c, b\%c, c)+2\left \lfloor \frac{b}{c} \right \rfloor f(n, a\%c, b\%c, c)+(\left \lfloor \frac{a}{c} \right \rfloor)^2*\frac{n*(n+1)*(2n+1)}{6}+ (\left \lfloor \frac{b}{c} \right \rfloor)^2 *(n+1)+2\left \lfloor \frac{a}{c} \right \rfloor\left \lfloor \frac{b}{c} \right \rfloor*\frac{n*(n+1)}{2}\end{align*}$$ 

  $Case\ 2$:当$a<c\ \&\&\  b<c\ \&\&\ a\neq 0$时 $$\begin{align*}h(n,a,b,c) &=\sum_{i=0}^n(\left \lfloor \frac{a*i+b}{c} \right \rfloor)^2\\ &=\sum_{i=0}^n \sum_{j=0}^{\left \lfloor \frac{a*i+b}{c} \right \rfloor -1}\sum_{k=0}^{\left \lfloor \frac{a*i+b}{c} \right \rfloor -1}1\\ &=\sum_{j=0}^{m-1}\sum_{k=0}^{m-1}\sum_{i=0}^n[j<\left \lfloor \frac{a*i+b}{c} \right \rfloor\&\&k<\left \lfloor \frac{a*i+b}{c} \right \rfloor]\\ &=\sum_{j=0}^{m-1}\sum_{k=0}^{m-1}\sum_{i=0}^n[i>A(j)\&\&i>A(k))]\\ &= \sum_{j=0}^{m-1}\sum_{k=0}^{m-1}\sum_{i=0}^n[i>A(max(j,k))]\\ &=2\sum_{j=0}^{m-1}\sum_{k=0}^{j-1}\sum_{i=0}^n[i>A(j)] +\sum_{j=0}^{m-1}\sum_{i=0}^n[i>A(j)]\\ &= 2\sum_{j=0}^{m-1}j*(n-A(j))+\sum_{j=0}^{m-1} (n-A(j))\\ &=2n\sum_{j=0}^{m-1}j-2\sum_{j=0}^{m-1}j*A(j)+m*n-\sum_{j=0}^{m-1}A(j)\\ &=2n*\frac{(m-1)*m}{2}+m*n-2g(m-1, c,-b+c-1,a)-f(m-1,c,-b+c-1,a)\\ &=n*m^2-2g(m-1, c,-b+c-1,a)-f(m-1,c,-b+c-1,a)\end{align*}$$  

  $Case\ 3$:当$a < c \ \&\&\  b < c \ \&\&\ a = 0$时 $$h(n, a, b, c) = 0$$

 

代码:(洛谷P5170)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int mod = 998244353;

inline int read()
{
    int ret, f=1;
    char c;
    while((c=getchar())&&(c<'0'||c>'9'))if(c=='-')f=-1;
    ret=c-'0';
    while((c=getchar())&&(c>='0'&&c<='9'))ret=(ret<<3)+(ret<<1)+c-'0';
    return ret*f;
}

int T, n, inv2, inv6;

struct node{
    ll fir, sec, thr;
    node(){}
    node(ll x, ll y, ll z) {
        fir = x;
        sec = y;
        thr = z;
    }
}ans;

ll add(ll x, ll y)
{
    return x + y < mod? x + y: x + y - mod;
}

ll rdc(ll x, ll y)
{
    return x - y < 0? x - y + mod: x - y;
}

ll qpow(ll x, int y)
{
    ll ret = 1;
    while(y)
    {
        if(y&1)
            ret = ret * x % mod;
        x = x * x % mod;
        y >>= 1;
    }
    return ret;
}

ll calc1(ll x)
{
    return (x * (x + 1) % mod) * inv2 % mod;
}

ll calc2(ll x)
{
    return ((x * (x + 1) % mod) * (2 * x + 1) % mod) * inv6 % mod;
}

node dfs(ll x, ll a, ll b, ll c)
{
    if(x < 0)    return node(0, 0, 0);
    if(a >= c || b >= c)
    {
        node ret, res = dfs(x, a % c, b % c, c);
        ret.fir = (a / c) * calc1(x) % mod;
        ret.fir = add(ret.fir, (x + 1) * (b / c) % mod);
        ret.fir = add(ret.fir, res.fir);
        ret.sec = add((a / c) * calc2(x) % mod, (b / c) * calc1(x) % mod);
        ret.sec = add(ret.sec, res.sec);
        ret.thr = res.thr;
        ret.thr = add(ret.thr, (2 * (a / c) % mod) * res.sec % mod);
        ret.thr = add(ret.thr, (2 * (b / c) % mod) * res.fir % mod);
        ret.thr = add(ret.thr, (2 * (a / c) * (b / c) % mod) * calc1(x) % mod);
        ret.thr = add(ret.thr, ((a / c) * (a / c) % mod) * calc2(x) % mod);
        ret.thr = add(ret.thr, ((b / c) * (b / c) % mod) * (x + 1) % mod);
        return ret;
    }
    if(a == 0 || x == 0)    return node(0, 0, 0);
    ll m = (a * x + b) / c;
    node res = dfs(m - 1, c, - b + c - 1, a), ret;
    ret.fir = rdc(m * x % mod, res.fir);
    ret.sec = add(res.thr, res.fir);
    ret.sec = ret.sec * inv2 % mod;
    ret.sec = rdc(m * calc1(x) % mod, ret.sec);
    ret.thr = (x * m % mod) * m % mod;
    ret.thr = rdc(ret.thr, add(2 * res.sec % mod, res.fir));
    return ret;
}

int main()
{
    T = read();
    int a, b, c;
    inv2 = (mod + 1) >> 1;
    inv6 = qpow(6, mod - 2);
    while(T --)
    {
        n = read(); a = read(); b = read(); c = read();
        ans = dfs(n, a, b, c);
        printf("%lld %lld %lld\n", ans.fir, ans.thr, ans.sec);
    }
    return 0;
}
View Code
posted @ 2020-01-21 16:42  Mr_Joker  阅读(192)  评论(0编辑  收藏  举报