随笔分类 - 分治
摘要:按位贪心,以当前考虑位是0还是1将数分成两部分,则MST中这两部分之间只会存在一条边,因为一旦有两条或以上的边,考虑两条边在原图中所成的环,显然这两条边有一条是环上的权值最大边,不会出现在MST中。则建出trie后每次分治时用数较少的部分在trie上贪心求出边的最小权值即可。
阅读全文
摘要:设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移。容易想到这个dp有决策单调性,感性证明一下比较显然。如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组维护即可,类似莫队的每次都在原有基础上更新。注意更新时先加再减。感觉复杂度非常玄学丝毫不能看出为啥只
阅读全文
摘要:感觉比较套路,每次在长边中轴线处切一刀,求出切割线上的点对矩形内所有点的单源最短路径,以此更新每个询问,递归处理更小的矩形。因为若起点终点跨过中轴线是肯定要经过的,而不跨过中轴线的则可以选择是否经过中轴线,若不经过一定就在矩形的某一半了。复杂度O((nm)1.5log(nm)),不太会证。
阅读全文
摘要:如果要询问的某个纵坐标为inf的点左边是否有点能与其构成所要求的矩形,只要用个单调栈就可以了。可以想到用分治来制造单调性。 按横坐标排序,每次考虑跨过分治中心的矩形。考虑右边的每个点能与左边的哪些点构成矩形。首先这受到右边点的限制,对于每个点用set求出这个范围。然后对所有点按纵坐标从大到小排序,维
阅读全文
摘要:完全想不到地,考虑分治。 对区间[l,r],将左端点x由mid不断左移,右边记录最右的p满足max[mid+1,p]<=max[x,mid],q满足min[mid+1,q]>=min[x,mid]。这样右边被分成三部分,分别统计。 对于p和q左边的位置,这部分的max和min显然是由左边部分决定的,
阅读全文
摘要:最小割树:新建一个图,包含原图的所有点,初始没有边。任取两点跑最小割,给两点连上权值为最小割的边,之后对于两个割集分别做同样的操作。最后会形成一棵树,树上两点间路径的最小值即为两点最小割。证明一点都不会。 那么这个题就很好做了,连树都不用建。
阅读全文
摘要:考虑异或最短路应该怎么求。那么这是个WC原题,dfs一遍找到所有有用的环丢进线性基即可,因为每一个环的权值都是可以取到且不对其他部分产生影响的。 现在给了一棵树,不妨就把他看做原图的dfs树。每增加一条边就是增加了一个环。算出权值后,现在问题变为求一个数和任选一段区间里的数的最大异或值。 比较暴力的
阅读全文
摘要:类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形。 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边),并且这些点所组成的三角形周长均不小于d。然而并不清楚这里至多会有多少个点,vfk曾说上界是16,
阅读全文