随笔分类 - 生成函数
摘要:显然相当于求有不超过n-2m种颜色出现奇数次的方案数。由于相当于是对各种颜色选定出现次数后有序排列,可以考虑EGF。 容易构造出EGF(ex-e-x)/2=Σx2k+1/(2k+1)!,即表示该颜色只能选奇数个。同理有EGF(ex+e-x)/2=Σx2k/(2k)!,即表示该颜色只能选偶数个。 考虑
阅读全文
摘要:https://www.luogu.org/problemnew/solution/P4002 神树的题解写的很清楚了。稍微补充: 1.[x^i]ln(A(ax))=a^i[x^i]ln(A(x)),感觉直接证并非那么显然,大约是先求出多项式再把ax作为自变量带回去。 2.最后一句中的式子,即考虑由
阅读全文
摘要:因为一大堆式子实在懒得写题解了。首先用prufer推出CF917D用到的结论,然后具体见前言不搭后语的注释。
阅读全文
摘要:显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv)。将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi)。但这个多项式的项数是Σvi级别的,无法直接分治FFT卷起来。 我们要降低多项式的次数,于是考虑取对数,化乘为加,得到lnF
阅读全文
摘要:显然的做法是求出斯特林数,但没有什么优化空间。 考虑一种暴力dp,即设f[i]为i块积木的所有方案层数之和,g[i]为i块积木的方案数。转移时枚举第一层是哪些积木,于是有f[i]=g[i]+ΣC(i,j)·f[i-j],g[i]=ΣC(i,j)·g[i-j] (j=1~i)。 考虑优化 。我们发现这
阅读全文
摘要:考虑容斥,枚举一个子集S在1号猎人之后死。显然这个概率是w1/(Σwi+w1) (i∈S)。于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了。
阅读全文
摘要:显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+……)。 化为有限,则有f(x)=x(1+x)2·(1+x+x2)·(1+x+x2+x3)/(1-x2)
阅读全文
摘要:首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少。(虽然不用递推式也能显然地知道答案是2n-1)。 类似地,lqp拆分有递推式f(n)=Σf(i)fib(n-i) (i=0~n-1)。由乘法分配律就可以推出。特别地,f(0)=1。 又是一个
阅读全文
摘要:设f(n)为权值为n的神犇二叉树个数。考虑如何递推求这个东西。 套路地枚举根节点的左右子树。则f(n)=Σf(i)f(n-i-cj),cj即根的权值。卷积的形式,cj也可以通过卷上一个多项式枚举。可以考虑生成函数。 设F(x)为f(n)的生成函数,G(x)为c(n)的生成函数,G(x)中含有xa项表
阅读全文
摘要:设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和。则答案为g(n)/f(n)。 显然f(n)为卡特兰数。有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1)。 类似地,左子树节点数为i时右子树有f(n-i-1)种情况,那么可以对左子树的叶子节点数之和计数,显然再
阅读全文
摘要:参考:http://www.matrix67.com/blog/archives/120 前置: 广义组合数:C(n,m)=n·(n-1)·……·(n-m+1)/m! (n∈R,m∈N) 广义二项式定理: 等比数列求和公式:a1+a1·q+a1·q2+a1·q3+……a1·qn=a1(1-qn+1)
阅读全文