基础莫比乌斯反演推导
本篇文章主要记录了一些基础的莫比乌斯反演的推导套路以及过程,如果有错误欢迎指出。
感谢:
command_block \(\text{大佬的博客}\)
pengym \(\text{大佬的博客}\)
peterwuyihong \(\text{大佬的题单}\)
\(\text{这里是常用的反演结论}\)
\[\sum\limits_{i \mid n}^{}{\mu(i)} = [n=1]
\]
\[\sum\limits_{i \mid n}^{}{\varphi(i)} = n
\]
\[\mu(ij)=\mu(i)\mu(j) [i \perp j]
\]
\[\varphi(ij) = \dfrac{\varphi(i)\varphi(j)(i,j)}{\varphi((i,j))}
\]
(你可能需要整除分块)
题目1
\[\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{[(i,j)=1]}}
\]
\(\text{令}\) \(n \leq m\)
\[\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{\sum\limits_{d=1}^{n}{\mu(d)[d\mid i][d\mid j]}}}
\]
\[\sum\limits_{d=1}^{n}{\mu(d) \sum\limits_{i=1}^{n}{[d\mid i] \sum\limits_{j=1}^{m}{[d\mid j]}}}
\]
\[\sum\limits_{d=1}^{n}{\mu(d) \left\lfloor\dfrac{n}{d}\right\rfloor \left\lfloor\dfrac{m}{d}\right\rfloor}
\]
\(O(\sqrt{n})\)

浙公网安备 33010602011771号