摘要: 已知 \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\),求证 \(x^2+y^2=1\)。 \[x\sqrt{1-y^2}+y\sqrt{1-x^2}=1 \]\[x\sqrt{1-y^2}=1-y\sqrt{1-x^2} \]\[x^2(1-y^2)=1+y^2(1-x^2)-2 阅读全文
posted @ 2025-10-18 21:08 Fido_Puppy 阅读(4) 评论(0) 推荐(0)