10 2018 档案

美国数学月刊问题18-10-31
摘要:Problem 12067 - 08 - P. Bracken (USA). 对于正整数$n$.令$$\beta_n=6n+12n^2(\gamma-\gamma_n),$$其中$\gamma_n=H_n-\ln n$, $\displaystyle H_n=\sum_{j=1}^n\frac{1} 阅读全文

posted @ 2018-10-31 00:59 Eufisky 阅读(2196) 评论(0) 推荐(0)

三角多项式不等式
摘要:(Fejer-Jackson-Growall不等式) 1910年Fejer猜想,三角函数级数\[\frac{\pi-x}{2}=\sum_{k=1}^{\infty}\frac{\sin kx}{k},\quad 0<x\leq\pi\]的所有部分和\[S_n(x)=\sum_{k=1}^{n}\f 阅读全文

posted @ 2018-10-28 00:01 Eufisky 阅读(923) 评论(0) 推荐(0)

椭圆积分
摘要:For the elliptic integral of first kind, $K(m)=\int_0^{\pi/2}\frac{d\theta}{\sqrt{1-m^2sin^2\theta}} $, it is well-known that $K(m)$ can be expressed 阅读全文

posted @ 2018-10-17 00:56 Eufisky 阅读(1048) 评论(0) 推荐(1)

级数不等式问题
摘要:The following is probably a math contest problem. I have been unable to locate the original source. Suppose that $\{a_i\}$ is a set of positive real n 阅读全文

posted @ 2018-10-12 16:01 Eufisky 阅读(1182) 评论(0) 推荐(0)

与三角有关的级数求和
摘要:壁纸:C:\Users\Administrator\AppData\Local\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Assets C:\Users\%username%\AppData\ 阅读全文

posted @ 2018-10-07 01:07 Eufisky 阅读(603) 评论(0) 推荐(0)

平面几何难题
摘要:IBM平面几何难题:https://www.research.ibm.com/haifa/ponderthis/challenges/August1998.html We have a triangle ABC, with a point D on side AB, E, on side BC, a 阅读全文

posted @ 2018-10-02 21:26 Eufisky 阅读(530) 评论(0) 推荐(0)

导航