2024A加试
\documentclass{article} \usepackage{amsmath,amssymb,graphicx} \usepackage{geometry} \geometry{a4paper,margin=1.5cm} \title{2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A卷)参考答案及评分标准} \author{} \date{} \begin{document} \maketitle \begin{description} \item[说明:] \begin{enumerate} \item 评阅试卷时,请严格按照本评分标准的评分档次给分. \item 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次. \end{enumerate} \end{description} \section*{一、(本题满分40分)} 给定正整数\( r \).求最大的实数\( c \),使得存在一个公比为\( r \)的实数等比数列\( \{a_n\}_{n \geq 1} \),满足\( \|a_n\| \geq c \)对所有正整数\( n \)成立.(\( \|x\| \)表示实数\( x \)到与它最近整数的距离.) \subsection*{解:} \subsubsection*{情形1:\( r \)为奇数.} 对任意实数\( x \),显然有\( \|x\| \leq \frac{1}{2} \),故满足要求的\( c \)不超过\( \frac{1}{2} \). 又取\( \{a_n\} \)的首项\( a_1 = \frac{1}{2} \),注意到对任意正整数\( n \),均有\( r^{n-1} \)为奇数,因此\( \|a_n\| = \left\| \frac{r^{n-1}}{2} \right\| = \frac{1}{2} \).这意味着\( c = \frac{1}{2} \)满足要求.从而满足要求的\( c \)的最大值为\( \frac{1}{2} \). \hfill \textbf{10分} \subsubsection*{情形2:\( r \)为偶数.} 设\( r = 2m \)(\( m \in \mathbb{N}^* \)).对任意实数\( \alpha \),我们证明\( \|a_1\| \)与\( \|a_2\| \)中必有一数不超过\( \frac{m}{2m+1} \),从而\( c \leq \frac{m}{2m+1} \). 事实上,设\( a_1 = k \pm \delta \),其中\( k \)是与\( a_1 \)最近的整数(之一),且\( 0 \leq \delta \leq \frac{1}{2} \). 注意到,对任意实数\( x \)及任意整数\( k \),均有\( \|x + k\| = \|x\| \),以及\( \|-x\| = \|x\| \). - 若\( 0 \leq \delta \leq \frac{m}{2m+1} \),则\( \|a_1\| = \|k \pm \delta\| = \delta \leq \frac{m}{2m+1} \). - 若\( \frac{m}{2m+1} < \delta \leq \frac{1}{2} \),则\( \frac{2m^2}{2m+1} < 2m\delta \leq m \),即\( m - \frac{m}{2m+1} < \delta r \leq m \),此时 \[ \|a_2\| = \|a_1 r\| = \|k r \pm \delta r\| = \|\delta r\| < \frac{m}{2m+1}. \] \hfill \textbf{30分} 另一方面,取\( a_1 = \frac{m}{2m+1} \),则对任意正整数\( n \),有\( a_n = \frac{m}{2m+1}(2m)^{n-1} \).由二项式展开可知: \[ a_n = \frac{m}{2m+1}(2m + 1 - 1)^{n-1} = K + (-1)^{n-1} \frac{m}{2m+1}, \] 其中\( K \)为整数,故\( \|a_n\| = \frac{m}{2m+1} \).这意味着\( c = \frac{m}{2m+1} \)满足要求. 从而满足要求的\( c \)的最大值为\( \frac{m}{2m+1} = \frac{r}{2(r+1)} \). 综上,当\( r \)为奇数时,所求\( c \)的最大值为\( \frac{1}{2} \);当\( r \)为偶数时,所求\( c \)的最大值为\( \frac{r}{2(r+1)} \). \hfill \textbf{40分} \section*{二、(本题满分40分)} 如图,在凸四边形\( ABCD \)中,\( AC \)平分\( \angle BAD \),点\( E, F \)分别在边\( BC, CD \)上,满足\( EF \parallel BD \).分别延长\( FA, EA \)至点\( P, Q \),使得过点\( A, B, P \)的圆\( \omega_1 \)及过点\( A, D, Q \)的圆\( \omega_2 \)均与直线\( AC \)相切.证明:\( B, P, Q, D \)四点共圆. (答题时请将图画在答卷纸上) \begin{figure}[h] \centering \includegraphics[scale=0.6]{figure2.pdf} % 实际使用时需替换为正确的图片路径 \caption{第二题图形} \end{figure} \subsection*{证明:} 由圆\( \omega_1 \)与\( AC \)相切知\( \angle BPA = \angle BAC = \angle CAD > \angle CAF = 180^\circ - \angle PAC \),故\( BP, CA \)的延长线相交,记交点为\( L \). 由\( EF \parallel BD \)知\( \frac{CE}{CB} = \frac{CF}{CD} \).在线段\( AC \)上取点\( K \),使得\( \frac{CK}{CA} = \frac{CE}{CB} = \frac{CF}{CD} \),则\( KE \parallel AB \),\( KF \parallel AD \). \hfill \textbf{10分} 由\( \angle ABL = \angle PAL = \angle KAF \),\( \angle BAL = 180^\circ - \angle BAC = 180^\circ - \angle CAD = \angle AKF \),可知\( \triangle ABL \sim \triangle KAF \),所以\( AL = \frac{KF \cdot AB}{KA} \). \hfill \textbf{20分} 同理,记\( DQ, CA \)的延长线交于点\( L' \),则\( AL' = \frac{KE \cdot AD}{KA} \). 又由\( KE \parallel AB \),\( KF \parallel AD \)知\( \frac{KE}{AB} = \frac{CK}{CA} = \frac{KF}{AD} \),即\( KE \cdot AD = KF \cdot AB \). 所以\( AL' = AL \),即\( L' \)与\( L \)重合. 由切割线定理知\( LP \cdot LB = LA^2 = LQ \cdot LD \),所以\( B, P, Q, D \)四点共圆. \hfill \textbf{40分} \section*{三、(本题满分50分)} 给定正整数\( n \).在一个\( 3 \times n \)的方格表上,由一些方格构成的集合\( S \)称为“连通的”,如果对\( S \)中任意两个不同的小方格\( A, B \),存在整数\( l \geq 2 \)及\( S \)中方格\( A = C_1, C_2, \cdots, C_l = B \),满足\( C_i \)与\( C_{i+1} \)有公共边(\( i = 1, 2, \cdots, l-1 \)). 求具有下述性质的最大整数\( K \):若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合\( S \),使得\( S \)中的黑格个数与白格个数之差的绝对值不小于\( K \). \subsection*{解:} 所求最大的\( K = n \). 对一个由小方格构成的集合\( S \),记\( S_b \)是\( S \)中的黑格个数,\( S_w \)是\( S \)中的白格个数.用\( [i, j] \)表示第\( i \)行第\( j \)列处的方格,这里\( 1 \leq i \leq 3 \),\( 1 \leq j \leq n \).对于两个方格\( A = [i, j] \),\( B = [i', j'] \),定义它们之间的距离为\( d(A, B) = |i - i'| + |j - j'| \). 首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合\( S \),均有\( |S_b - S_w| \leq n \),这表明\( K \leq n \). 设\( [1, 1] \)是黑格,并记\( \varepsilon \in \{0, 1\} \),满足\( \varepsilon \equiv n \pmod{2} \). 先证\( S_b - S_w \leq n \).可不妨设\( S \)包含所有黑格,这是因为若\( S \)不包含所有黑格,取不属于\( S \)的黑格\( A \)满足\( d(A, S) = \min_{B \in S} d(A, B) \).易知\( d(A, S) = 1 \)或\( 2 \): - 若\( d(A, S) = 1 \),取\( S' = S \cup \{A\} \),则\( S' \)仍是连通的,且\( S_b' - S_w' \)更大. - 若\( d(A, S) = 2 \),则存在与\( A \)相邻的白格\( C \),而\( C \)与\( S \)中某个方格\( B \)相邻,取\( S' = S \cup \{A, B\} \),则\( S' \)仍是连通的,且\( S_b' - S_w' \)不变. 因而可逐步扩充\( S \),使得\( S \)包含所有黑格,保持\( S \)的连通性,且\( S_b - S_w \)不减. 考虑白格集合\( W_k = \{[i, j] \mid i + j = k\} \)(\( k = 3, 5, \cdots, n + 1 + \varepsilon \)),每个\( W_k \)中至少有一个方格属于\( S \),否则不存在从黑格\( A = [1, 1] \in S \)到黑格\( B = [3, n - 1 + \varepsilon] \)的\( S \)中路径.故\( S_w \geq \frac{1}{2}(n + \varepsilon) \),而\( S_b = \frac{1}{2}(3n + \varepsilon) \),故\( S_b - S_w \leq n \). \hfill \textbf{10分} 类似可证\( S_w - S_b \leq n \).同上,可不妨设\( S \)包含所有白格,从而\( S_w = \frac{1}{2}(3n - \varepsilon) \).再考虑黑格集合\( B_k = \{[i, j] \mid i + j = k\} \)(\( k = 4, 6, \cdots, n + 2 - \varepsilon \)),每个\( B_k \)中至少有一个黑格属于\( S \),否则不存在从白格\( A = [1, 2] \)到白格\( B = [3, n - \varepsilon] \)的\( S \)中路径.从而\( S_b \geq \frac{1}{2}(n - \varepsilon) \),故\( S_w - S_b \leq n \). \hfill \textbf{20分} 下面证明\( K = n \)具有题述性质,即对任意的染色方案,总存在连通的集合\( S \),使得\( |S_b - S_w| \geq n \). 设表格中共有\( X \)个黑格和\( Y \)个白格,在第二行中有\( x \)个黑格和\( y \)个白格.于是\( X + Y = 3n \),\( x + y = n \).故: \[ (X - y) + (Y - x) = (X + Y) - (x + y) = 2n. \] 由平均值原理可知\( \max\{X - y, Y - x\} \geq n \). 不妨设\( X - y \geq n \).取\( S \)为第二行中的\( y \)个白格以及所有\( X \)个黑格.由于\( S \)包含第二行中所有方格,因而\( S \)是连通的.而\( S_b = X \),\( S_w = y \),\( S_b - S_w = X - y \geq n \). 综上所述,\( K_{\max} = n \). \hfill \textbf{50分} \section*{四、(本题满分50分)} 设\( A, B \)为正整数,\( S \)是一些正整数构成的一个集合,具有下述性质: \begin{enumerate} \item 对任意非负整数\( k \),有\( A^k \in S \); \item 若正整数\( n \in S \),则\( n \)的每个正约数均属于\( S \); \item 若\( m, n \in S \),且\( m, n \)互素,则\( mn \in S \); \item 若\( n \in S \),则\( An + B \in S \). \end{enumerate} 证明:与\( B \)互素的所有正整数均属于\( S \). \subsection*{证明:} 先证明下述引理. \subsubsection*{引理:} 若\( n \in S \),则\( n + B \in S \). \subsubsection*{引理的证明:} 对\( n \in S \),设\( n_1 \)是\( n \)的与\( A \)互素的最大约数,并设\( n = n_1 n_2 \),则\( n_2 \)的素因子均整除\( A \),从而\( (n_1, n_2) = 1 \).由条件(1)及(2)知,对任意素数\( p \mid A \)及任意正整数\( k \),有\( p^k \in S \).因此,将\( A^{k-1} n_1 \)作标准分解,并利用(3)知\( A^{k-1} n_1 \in S \).又\( n_2 \mid n \),而\( n \in S \),故由(2)知\( n_2 \in S \).因\( (A^{k-1} n_1, n_2) = 1 \),故由(3)知\( A^{k-1} n_1 \cdot n_2 \in S \),即\( A^{k-1} n \in S \).再由(4)知: \[ A^k n + B \in S \quad (\text{对任意正整数 } k). \tag{1} \] \hfill \textbf{10分} 设\( n + B = C \cdot D \),这里正整数\( C \)的所有素因子均整除\( A \),正整数\( D \)与\( A \)互素,从而\( (C, D) = 1 \).由(1)及(2)知\( C \in S \)(见上面\( A^{k-1} n \in S \)的证明). 另一方面,因\( (D, A) = 1 \),故由欧拉定理知\( D \mid A^{\varphi(D)} - 1 \).因此: \[ A^{\varphi(D)} n + B = (A^{\varphi(D)} - 1)n + (n + B) \equiv 0 \pmod{D}, \] 但由(1)知\( A^{\varphi(D)} n + B \in S \),故由(2)知\( D \in S \).结合\( C \in S \)及\( (C, D) = 1 \)知\( CD \in S \),即\( n + B \in S \).引理证毕. \hfill \textbf{40分} 回到原问题.由(1),取\( k = 0 \)知\( 1 \in S \),故反复用引理知对任意正整数\( y \),有\( 1 + By \in S \). 对任意\( n \in \mathbb{N}^* \),\( (n, B) = 1 \),存在正整数\( x, y \)使得\( nx = 1 + By \),因此\( nx \in S \).因\( n \mid nx \),故\( n \in S \).证毕. \hfill \textbf{50分} \end{document}
浙公网安备 33010602011771号