深度可分离卷积

https://blog.csdn.net/zml194849/article/details/117021815

https://blog.csdn.net/m0_45267220/article/details/130291855

一些轻量级的网络,如mobilenet中,会有深度可分离卷积depthwise separable convolution,由depthwise(DW)和pointwise(PW)两个部分结合起来,用来提取特征feature map。相比常规的卷积操作,其参数数量和运算成本比较低。

深度可分离卷积主要分为两个过程,分别为逐通道卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)。

逐通道卷积(Depthwise Convolution)
Depthwise Convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积,这个过程产生的feature map通道数和输入的通道数完全一样。

一张5×5像素、三通道彩色输入图片(shape为5×5×3),Depthwise Convolution首先经过第一次卷积运算,DW完全是在二维平面内进行。卷积核的数量与上一层的通道数相同(通道和卷积核一一对应)。所以一个三通道的图像经过运算后生成了3个Feature map(如果有same padding则尺寸与输入层相同为5×5),如下图所示。(卷积核的shape即为:卷积核W x 卷积核H x 输入通道数)

 

 

其中一个Filter只包含一个大小为3×3的Kernel,卷积部分的参数个数计算如下(即为:卷积核Wx卷积核Hx输入通道数):

N_depthwise = 3 × 3 × 3 = 27

计算量为(即:卷积核W x 卷积核H x (图片W-卷积核W+1) x (图片H-卷积核H+1) x 输入通道数)

C_depthwise=3x3x(5-2)x(5-2)x3=243

Depthwise Convolution完成后的Feature map数量与输入层的通道数相同,无法扩展Feature map。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息。因此需要Pointwise Convolution来将这些Feature map进行组合生成新的Feature map。

逐点卷积(Pointwise Convolution)
Pointwise Convolution的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1×1×M,M为上一层的通道数。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个卷积核就有几个输出Feature map。(卷积核的shape即为:1 x 1 x 输入通道数 x 输出通道数)

 

 

由于采用的是1×1卷积的方式,此步中卷积涉及到的参数个数可以计算为(即为:1 x 1 x 输入通道数 x 输出通道数):

N_pointwise = 1 × 1 × 3 × 4 = 12

计算量(即为:1 x 1 x 特征层W x 特征层H x 输入通道数 x 输出通道数):

C_pointwise = 1 × 1 × 3 × 3 × 3 × 4 = 108

经过Pointwise Convolution之后,同样输出了4张Feature map,与常规卷积的输出维度相同。

四、参数对比
回顾一下,常规卷积的参数个数为:

N_std = 4 × 3 × 3 × 3 = 108

Separable Convolution的参数由两部分相加得到:

N_depthwise = 3 × 3 × 3 = 27

N_pointwise = 1 × 1 × 3 × 4 = 12

N_separable = N_depthwise + N_pointwise = 39

相同的输入,同样是得到4张Feature map,Separable Convolution的参数个数是常规卷积的约1/3。因此,在参数量相同的前提下,采用Separable Convolution的神经网络层数可以做的更深。

五、计算量对比
回顾一下,常规卷积的计算量为:

C_std =3*3*(5-2)*(5-2)*3*4=972

Separable Convolution的计算量由两部分相加得到:

C_depthwise=3x3x(5-2)x(5-2)x3=243

C_pointwise = 1 × 1 × 3 × 3 × 3 × 4 = 108

C_separable = C_depthwise + C_pointwise = 351

相同的输入,同样是得到4张Feature map,Separable Convolution的计算量是常规卷积的约1/3。因此,在计算量相同的情况下,Depthwise Separable Convolution可以将神经网络层数可以做的更深。

import torch
from torch import nn
from torchsummary import summary
class depth_separable(nn.Module):
    def __init__(self, in_channels:int, out_channels:int) -> None:
        super(depth_separable,self).__init__()
        self.depth_conv = nn.Conv2d(   #和常规卷积不同就是设置了groups参数
        in_channels,
        in_channels,
        kernel_size=3,
        stride=1,
        groups=in_channels,      #groups设置为输入通道数,可以使逐通道卷积
        )
        self.point_conv = nn.Conv2d(   #实现点卷积
        in_channels,
        out_channels,
        kernel_size=1,
        )
    def forward(self, x):
 
        return self.point_conv(self.depth_conv(x))
    
class mydepth_separable(nn.Module):
    def __init__(self) -> None:
        super(mydepth_separable,self).__init__()
        self.conv2d = depth_separable(3,8)
        self.relu = nn.ReLU()
    def forward(self, x):
        
        return self.relu(self.conv2d(x))
device = torch.device("cuda" )
model=mydepth_separable().to(device)
summary(model, (3, 5, 5))     #查看参数量(3,5,5)表示输入的尺寸是5×5×3

  

posted @ 2024-04-11 22:15  yinghualeihenmei  阅读(75)  评论(0编辑  收藏  举报