上一页 1 2 3 4 5 6 7 ··· 11 下一页
摘要: import sympy as sp sp.var('t') sp.var('x1:4', cls=sp.Function) #定义3个符号函数 x = sp.Matrix([x1(t), x2(t), x3(t)]) #列向量 A = sp.Matrix([[3,-1,1],[2,0,-1],[1 阅读全文
posted @ 2024-11-12 14:25 等我刷把宗师 阅读(19) 评论(0) 推荐(0)
摘要: import sympy as sp sp.var('t'); y=sp.Function('y') u=sp.exp(-t)*sp.cos(t) eq=y(t).diff(t,4)+10*y(t).diff(t,3)+35*y(t).diff(t,2)+\ 50*y(t).diff(t)+24*y 阅读全文
posted @ 2024-11-12 14:24 等我刷把宗师 阅读(22) 评论(0) 推荐(0)
摘要: import sympy as sp sp.var('x'); y=sp.Function('y') eq=y(x).diff(x,2)-2*y(x).diff(x)+y(x)-sp.exp(x) con={y(0): 1, y(x).diff(x).subs(x,0): -1} s=sp.dsol 阅读全文
posted @ 2024-11-12 14:23 等我刷把宗师 阅读(29) 评论(0) 推荐(0)
摘要: import sympy as sp sp.var('x'); y=sp.Function('y') eq=y(x).diff(x)+2*y(x)-2*x**2-2*x s=sp.dsolve(eq, ics={y(0):1}) s=sp.simplify(s); print(s) 阅读全文
posted @ 2024-11-12 14:21 等我刷把宗师 阅读(16) 评论(0) 推荐(0)
摘要: import numpy as np import pandas as pd import sympy as sp sp.init_printing(use_latex=True) from scipy.integrate import odeint import matplotlib.pyplot 阅读全文
posted @ 2024-11-12 13:35 等我刷把宗师 阅读(20) 评论(0) 推荐(0)
摘要: import numpy as np import pandas as pd import sympy as sp sp.init_printing(use_latex=True) from scipy.integrate import odeint import matplotlib.pyplot 阅读全文
posted @ 2024-11-12 13:34 等我刷把宗师 阅读(21) 评论(0) 推荐(0)
摘要: import numpy as np from scipy.interpolate import interp1d, interp2d, UnivariateSpline, griddata import matplotlib.pyplot as plt np.random.seed(114514) 阅读全文
posted @ 2024-11-06 11:53 等我刷把宗师 阅读(24) 评论(0) 推荐(0)
摘要: import numpy as np from scipy.interpolate import interp1d, interp2d, UnivariateSpline, griddata import matplotlib.pyplot as plt t0 = np.linspace(700, 阅读全文
posted @ 2024-11-06 11:51 等我刷把宗师 阅读(34) 评论(0) 推荐(0)
摘要: import numpy as np from scipy.interpolate import interp1d, interp2d, UnivariateSpline, griddata import matplotlib.pyplot as plt from scipy.integrate i 阅读全文
posted @ 2024-11-06 11:43 等我刷把宗师 阅读(27) 评论(0) 推荐(0)
摘要: ··· import numpy as np t=np.arange(8) y=np.array([27.0, 26.8, 26.5, 26.3, 26.1, 25.7, 25.3, 24.8]) tb=t.mean(); yb=y.mean() a1=sum((t-tb)(y-yb))/sum(( 阅读全文
posted @ 2024-11-06 11:41 等我刷把宗师 阅读(21) 评论(0) 推荐(0)
上一页 1 2 3 4 5 6 7 ··· 11 下一页