Python财政收入影响因素分析及预测
分析
1 import numpy as np 2 import pandas as pd 3 4 inputfile = r'C:\Users\86184\Desktop\文件集\data/data.csv' # 输入的数据文件 5 data = pd.read_csv(inputfile) # 读取数据 6 7 # 描述性统计分析 8 description = [data.min(), data.max(), data.mean(), data.std()] # 依次计算最小值、最大值、均值、标准差 9 description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T # 将结果存入数据框 10 print('描述性统计结果:\n',np.round(description, 2)) # 保留两位小数 11 12 13 14 # 代码6-2 15 16 # 相关性分析 17 corr = data.corr(method = 'pearson') # 计算相关系数矩阵 18 print('相关系数矩阵为:\n',np.round(corr, 2)) # 保留两位小数 19 20 21 22 # 绘制热力图 23 import matplotlib.pyplot as plt 24 import seaborn as sns 25 inputfile = r'C:\Users\86184\Desktop\文件集\data/data.csv' # 输入的数据文件 26 data = pd.read_csv(inputfile) # 读取数据 27 plt.subplots(figsize=(10, 10)) # 设置画面大小 28 sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues") 29 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 30 plt.title('相关性热力图 (20信计1班邓红琼3013)',fontsize=20) 31 plt.show()


预测
1 def GM11(x0): #自定义灰色预测函数 2 import numpy as np 3 x1 = x0.cumsum() #1-AGO序列 4 z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列 5 z1 = z1.reshape((len(z1),1)) 6 B = np.append(-z1, np.ones_like(z1), axis = 1) 7 Yn = x0[1:].reshape((len(x0)-1, 1)) 8 [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数 9 f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值 10 delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)])) 11 C = delta.std()/x0.std() 12 P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0) 13 return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率
灰色预测
1 import sys 2 sys.path.append(r'C:\Users\86184\Desktop\文件集\data\code') # 设置路径 3 import numpy as np 4 import pandas as pd 5 from GM11 import GM11 # 引入自编的灰色预测函数 6 7 inputfile1 = r'C:\Users\86184\Desktop\文件集\data\new_reg_data.csv' # 输入的数据文件 8 inputfile2 = r'C:\Users\86184\Desktop\文件集\data\data.csv' # 输入的数据文件 9 new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据 10 data = pd.read_csv(inputfile2) # 读取总的数据 11 new_reg_data.index = range(1994, 2014) 12 new_reg_data.loc[2014] = None 13 new_reg_data.loc[2015] = None 14 l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] 15 for i in l: 16 f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] 17 new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果 18 new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果 19 new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 20 outputfile = r'C:\Users\86184\Desktop\文件集\data\new_reg_data_GM11.csv' # 灰色预测后保存的路径 21 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 22 y.extend([np.nan,np.nan]) 23 new_reg_data['y'] = y 24 new_reg_data.to_csv(outputfile) # 结果输出 25 print('预测结果为:\n',new_reg_data.loc[2014:2015,:]) # 预测结果展示

1 import sys 2 sys.path.append(r'C:\Users\86184\Desktop\文件集\data\code') # 设置路径 3 import numpy as np 4 import pandas as pd 5 from GM11 import GM11 # 引入自编的灰色预测函数 6 7 import matplotlib.pyplot as plt 8 from sklearn.svm import LinearSVR 9 10 inputfile = r'C:\Users\86184\Desktop\文件集\data\new_reg_data_GM11.xls' # 灰色预测后保存的路径 11 data = pd.read_excel(inputfile,index_col = 0,header =0) # 读取数据 12 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] 13 #print(data) # 属性所在列 14 data_train = data.loc[range(1994,2014)].copy() 15 print(data_train) 16 data_mean = data_train.mean() 17 data_std = data_train.std() 18 data_train = (data_train - data_mean)/data_std # 数据标准化 19 x_train = data_train[feature].values # 属性数据 20 y_train = data_train['y'].values # 标签数据 21 linearsvr = LinearSVR() # 调用LinearSVR()函数 22 linearsvr.fit(x_train,y_train) 23 x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 24 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] 25 outputfile = r'C:\Users\86184\Desktop\文件集\data\new_reg_data_GM11_revenue.xls' # SVR预测后保存的结果 26 27 28 print('真实值与预测值分别为:\n',data[['y','y_pred']]) 29 30 31 fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 32 plt.title('利用GM11对财政收入进行预测 (20信计1班邓红琼3013)',fontsize=20) 33 plt.show()


浙公网安备 33010602011771号