Python财政收入影响因素分析及预测

分析

 

 1 import numpy as np
 2 import pandas as pd
 3 
 4 inputfile = r'C:\Users\86184\Desktop\文件集\data/data.csv' # 输入的数据文件
 5 data = pd.read_csv(inputfile) # 读取数据
 6 
 7 # 描述性统计分析
 8 description = [data.min(), data.max(), data.mean(), data.std()]  # 依次计算最小值、最大值、均值、标准差
 9 description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T  # 将结果存入数据框
10 print('描述性统计结果:\n',np.round(description, 2))  # 保留两位小数
11 
12 
13 
14 # 代码6-2
15 
16 # 相关性分析
17 corr = data.corr(method = 'pearson')  # 计算相关系数矩阵
18 print('相关系数矩阵为:\n',np.round(corr, 2))  # 保留两位小数
19 
20 
21 
22 # 绘制热力图
23 import matplotlib.pyplot as plt
24 import seaborn as sns
25 inputfile = r'C:\Users\86184\Desktop\文件集\data/data.csv' # 输入的数据文件
26 data = pd.read_csv(inputfile) # 读取数据
27 plt.subplots(figsize=(10, 10)) # 设置画面大小 
28 sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues") 
29 plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
30 plt.title('相关性热力图 (20信计1班邓红琼3013)',fontsize=20)
31 plt.show()

 

预测

 

 1 def GM11(x0): #自定义灰色预测函数
 2   import numpy as np
 3   x1 = x0.cumsum() #1-AGO序列
 4   z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列
 5   z1 = z1.reshape((len(z1),1))
 6   B = np.append(-z1, np.ones_like(z1), axis = 1)
 7   Yn = x0[1:].reshape((len(x0)-1, 1))
 8   [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数
 9   f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值
10   delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
11   C = delta.std()/x0.std()
12   P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
13   return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率

 

灰色预测

 1 import sys
 2 sys.path.append(r'C:\Users\86184\Desktop\文件集\data\code')  # 设置路径
 3 import numpy as np
 4 import pandas as pd
 5 from GM11 import GM11  # 引入自编的灰色预测函数
 6 
 7 inputfile1 = r'C:\Users\86184\Desktop\文件集\data\new_reg_data.csv'  # 输入的数据文件
 8 inputfile2 = r'C:\Users\86184\Desktop\文件集\data\data.csv'  # 输入的数据文件
 9 new_reg_data = pd.read_csv(inputfile1)  # 读取经过特征选择后的数据
10 data = pd.read_csv(inputfile2)  # 读取总的数据
11 new_reg_data.index = range(1994, 2014)
12 new_reg_data.loc[2014] = None
13 new_reg_data.loc[2015] = None
14 l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
15 for i in l:
16   f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
17   new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
18   new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
19   new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
20 outputfile = r'C:\Users\86184\Desktop\文件集\data\new_reg_data_GM11.csv'  # 灰色预测后保存的路径
21 y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
22 y.extend([np.nan,np.nan])
23 new_reg_data['y'] = y
24 new_reg_data.to_csv(outputfile)  # 结果输出
25 print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示

 1 import sys
 2 sys.path.append(r'C:\Users\86184\Desktop\文件集\data\code')  # 设置路径
 3 import numpy as np
 4 import pandas as pd
 5 from GM11 import GM11  # 引入自编的灰色预测函数
 6 
 7 import matplotlib.pyplot as plt
 8 from sklearn.svm import LinearSVR
 9 
10 inputfile = r'C:\Users\86184\Desktop\文件集\data\new_reg_data_GM11.xls'  # 灰色预测后保存的路径
11 data = pd.read_excel(inputfile,index_col = 0,header =0)  # 读取数据
12 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] 
13 #print(data) # 属性所在列
14 data_train = data.loc[range(1994,2014)].copy() 
15 print(data_train)
16 data_mean = data_train.mean()
17 data_std = data_train.std()
18 data_train = (data_train - data_mean)/data_std  # 数据标准化
19 x_train = data_train[feature].values  # 属性数据
20 y_train = data_train['y'].values # 标签数据
21 linearsvr = LinearSVR()  # 调用LinearSVR()函数
22 linearsvr.fit(x_train,y_train)
23 x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
24 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
25 outputfile = r'C:\Users\86184\Desktop\文件集\data\new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
26 
27 
28 print('真实值与预测值分别为:\n',data[['y','y_pred']])
29 
30 
31 fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
32 plt.title('利用GM11对财政收入进行预测 (20信计1班邓红琼3013)',fontsize=20)
33 plt.show()

 

posted @ 2023-03-05 01:11  菜盒子  阅读(175)  评论(0)    收藏  举报