P6835 [Cnoi2020] 线形生物 部分分推导
P6835 [Cnoi2020] 线形生物 部分分推导(无证明)
链接
推导
Subtask1
返祖图中所有点都有自环且所有边均为自环(未画出),总图形如:

\[f_i = \frac{d_i}{d_i+1} f_i + \frac{1}{d_i+1} f_{i+1} + 1 \\ 
f_i = f_{i+1} + d_i + 1 \\ 
\]
Subtask2
返祖图中所有点均向且仅向自己的前驱连边,特别地,\(1\) 号节点的前驱是 \(1\) 号节点,总图形如:

\[\because f_{i} = \frac{d_{i}}{d_{i}+1}f_{i-1} + \frac{1}{d_{i}+1}f_{i+1} +1,令 f_{i} = k_{i}f_{i+1} + b_{i} , k_{1} = 1 , b_{1} = d_{1} + 1 \\
f_{i} = \frac{d_{i}}{d_{i}+1}(k_{i-1}f_{i} + b_{i-1}) + \frac{1}{d_{i}+1}f_{i+1} +1 \\
f_{i} = \frac{f_{i+1} + (d_{i}b_{i-1} + d_{i} + 1)}{d_{i}+1-d_{i}k_{i-1}} \\
\therefore k_{i} = \frac{1}{d_{i}+1-d_{i}k_{i-1}} , 
b_{i} = \frac{d_{i}b_{i-1} + d_{i} + 1}{d_{i}+1-d_{i}k_{i-1}} \\
\]
Subtask3
返祖图中所有点均向且仅向 \(1\) 号节点连边,总图形如:

\[f_{i} = \frac{1}{d_{i} + 1}f_{i+1} + \frac{d_{i}}{d_{i} + 1} f_1 + 1 , f_{i+1} = 0 \\
f_{i-1} = \frac{1}{d_{i-1} + 1}(\frac{d_{i}}{d_{i} + 1} f_1 + 1) + \frac{d_{i-1}}{d_{i-1} + 1} f_1 + 1 \\
f_{i-2} = \frac{1}{d_{i-2} + 1}(\frac{1}{d_{i-1} + 1}(\frac{d_{i}}{d_{i} + 1} f_1 + 1) + \frac{d_{i-1}}{d_{i-1} + 1} f_1 + 1) + \frac{d_{i-2}}{d_{i-2} + 1} f_1 + 1 \\
...... \\
f_{i-1} = \frac{(d_{i} + 1)(d_{i-1} + 1) - 1}{(d_{i} + 1)(d_{i-1} + 1)} f_1 
+ \frac{d_{i-1} + 2}{d_{i-1} + 1}\\
f_{i-2} = \frac{(d_{i} + 1)(d_{i-1} + 1)(d_{i-2} + 1) - 1}{(d_{i} + 1)(d_{i-1} + 1)(d_{i-2} + 1)} f_1 
+ \frac{(d_{i-1} + 1)(d_{i-2} + 1) + (d_{i-1} + 1) + 1}{(d_{i-1} + 1)(d_{i-2} + 1)}\\
...... \\
f_1 = \frac{\prod_{i=1}^n(d_i+1) - 1}{\prod_{i=1}^n(d_i+1)} f_1 
+ \frac{\sum_{i=1}^{i-1}\prod_{j=i}^{i-1}(d_i+1) + 1}{\prod_{i=1}^{n-1}(d_i+1)}\\
\prod_{i=1}^n(d_i+1)f_1 = [\prod_{i=1}^n(d_i+1) - 1] f_1 
+ \sum_{i=1}^{n}\prod_{j=i}^{n}(d_i+1)\\
f_1 = \sum_{i=1}^{n}\prod_{j=i}^{n}(d_j+1)\\
\]
Subtask5
\[E_{i \to i+1} = \frac{1}{d_i+1} + \frac{1}{d_i+1}\sum_{e(i,j) \in S} (E_{j \to i+1} + 1) \\
E_{i \to i+1} = 1 + \frac{1}{d_i+1}\sum_{e(i,j) \in S} E_{j \to i+1} \\
E_{i \to i+1} = 1 + \frac{1}{d_i+1}\sum_{e(i,j) \in S} \sum_{k=j}^{i}E_{k \to k+1} \\
f_i = E_{i \to i+1} , s_i = \sum_{i=1}^{i} f_i\\ 
f_i = 1 + \frac{1}{d_i+1}\sum_{e(i,j) \in S} (s_i-s_{j-1}) \\
f_i = 1 + \frac{1}{d_i+1}\sum_{e(i,j) \in S} (s_{i-1}-s_{j-1}) + \frac{d_i}{d_i+1} f_i\\
f_i = d_i + 1 + \sum_{e(i,j) \in S} (s_{i-1}-s_{j-1})\\
ANS = \sum_{i=1}^{n} f_i \\
\]
(不敢保证正确性)

                
            
        
浙公网安备 33010602011771号