CMC小测3

Score(77/100)

T4(14/14)

\(z = f(x, y)\) 是区域 \(D = \{(x, y) \mid 0\le x\le 1, 0\le y\le 1\}\) 上的可微函数. \(f(0, 0) = 0\),且 \(dz\bigg|_{(0, 0)} = 2dx + 3dy\),求 \(\lim\limits_{x\rightarrow 0 ^ +}\dfrac{\int_0^{x^2}dt\int_{x}^{\sqrt t} f(t ,u) du}{1 - \sqrt[4]{1 - x ^ 4}}\).

my solution

首先有 \(f_x(0, 0) = 2, f_y(0, 0) = 3\).

\(\int_0^{x^2}dt\int_{x}^{\sqrt t} f(t ,u) du = -\int_0^x\int_0^{u ^ 2} f(t, u)dtdu\).

\[I = \frac{-\int_0^x\int_0^{u ^ 2} f(t, u)dtdu}{\frac{1}{4}x^4} = \frac{-\int_0^{x^2}f(t, x)dt}{x^3} = \frac{-2xf(x^2, x) - \int_0^{x^2}f_y(t, x)dx}{3x^2} \]

\(I_1 = \frac{2xf(x^2,x)}{3x^2}, I_2 = \frac{\int_0^{x^2}f_y(t, x)dx}{3x^2}\).

\[I_1 = \frac{2(f(x^2, x) - f(0, 0))}{3x} = \frac{2}{3}\frac{\int_0^{x^2}f_x(t, 0) + \int_0^x f_y(x, t)dt}{x} = \frac{2}{3}\frac{x^2f_x(\xi, 0) + xf_y(x, \eta)}{x} = 2 \]

\[I_2 = \frac{x^2 f_y(\xi_1, \eta_1)}{3x^2} = 1 \]

所以最后 \(I = -I_1 -I_2 = -3\).

T5(0/14)

求与 \(\int_0^{+\infty} \frac{xdx}{1 + (x ^ 4 - 1)\sin^2x}\) 等价的无穷大量。

std solution

\[I = \int_0^{+\infty} \frac{xdx}{\cos^2x + x^4\sin^2x} = \lim\limits_{n\rightarrow \infty} \sum\limits_{k = 0} ^ n \int_{(k - 1)\pi} ^ {k\pi} \frac{xdx}{\cos^2x + x^4\sin^2x} \]

\(a_k = \int_{(k - 1)\pi} ^ {k\pi} \frac{xdx}{\cos^2x + x^4\sin^2x}\).

注意到:

\[J_a = \int \frac{dx}{\cos^2x + a\sin^2x} = \int\frac{\sec^2x dx}{1 + a\tan^2x} = \int\frac{d(\tan x)}{1 + a \tan^2 x} = \frac{1}{\sqrt a}\int \frac{d\left(\sqrt a \tan x\right)}{1 + (\sqrt a\tan x) ^ 2} \]

所以 \(J_a = \frac{1}{\sqrt a}\arctan(\sqrt a \tan x) + C\).

\(a_k\) 进行放缩:

\[a_k < \int_{(k - 1)\pi} ^ {k\pi} \frac{k\pi dx}{\cos^2x + ((k - 1)\pi) ^ 4 \sin ^2 x} = k\pi \left[\frac{1}{((k - 1)\pi) ^ 2}\arctan(((k - 1)\pi) ^ 2 \tan x)\right]_{(k - 1)\pi} ^ {k\pi} \]

但是这个区间上有瑕点,注意一下,要把 \([(k - 1)\pi, k\pi]\) 分成两个区间 \([(k - 1)\pi, (k - 1)\pi + \frac{\pi}{2})\)\(((k - 1)\pi + \frac{\pi}{2}, k\pi]\).

加起来后,有 \(a_k < \frac{k}{(k - 1) ^ 2}\),同理,有 \(a_k > \frac{k - 1}{k ^ 2}\),这两个数在 \(k\rightarrow +\infty\) 时是趋于相等的。

根据 stolz 定理,这个数列可能趋近于 \(\sum\limits_{k = 1} ^ n \frac{1}{k}\),只需说明一下:

\[\lim\limits_{n\rightarrow \infty} \frac{\sum\limits_{k = 1} ^ n a_k}{\sum\limits_{k = 1} ^ n\frac{1}{k}} = \lim\limits_{n\rightarrow \infty} \frac{a_k}{\frac{1}{k}} = 1 \]

所以原式和 \(\lim\limits_{n\rightarrow \infty}\sum\limits_{k = 1} ^ n \frac{1}{k}\) 或者 \(\lim\limits_{n\rightarrow \infty}\ln n\) 为等价无穷大。

T6(9/14)

\(u_n = \int_0^1 \frac{dt}{(1 + t ^ 4) ^ n}\).

  • \((1)\) 证明 \(\{u_n\}\) 收敛,并求 \(\lim\limits_{n\rightarrow \infty} u_n\).(4分)
  • \((2)\) 证明 \(\sum\limits_{n = 1} ^ {\infty} (-1) ^ n u_n\) 条件收敛.(5分)
  • \((3)\)\(\sum\limits_{n = 1} ^ {\infty} \frac{u_n}{n}\).(5分)

std solution

对于第一小题,直接分区间,取一个 \(\varepsilon = \frac{1}{\sqrt[5]{n}}\),将区间分为 \([0, \varepsilon]\)\([\varepsilon, 1]\),分段使用积分中值定理,可以知道答案是 \(0\).

对于第二小题,容易发现 \(u_n \ge u_{n + 1}\),所以根据莱布尼茨判别法,该级数条件收敛。

接下来是第三小题。

考虑如何从 \(u_{n + 1}\) 中搞出 \(u_n\),只需要把分母消掉一次即可,所以可以进行如下操作:

\[u_{n + 1} = \int_0 ^ 1 \frac{1 + t ^ 4 - t ^ 4}{(1 + t ^ 4) ^ {n + 1}}dt = u_{n} - \int_0 ^ 1\frac{t ^ 4dt}{(1 + t ^ 4) ^ {n + 1}} \]

\(I_n = \int_0^1 \frac{t ^ 4}{(1 + t ^ 4) ^ n}dt\).

\[I_n = \int_0^1 t\cdot \frac{t ^ 3}{(1 + t ^ 4) ^ n}dt = \frac{1}{4}\int_0 ^ 1 t\cdot \frac{d(1 + t ^ 4)}{(1 + t ^ 4) ^ n} = \frac{1}{4} \int_0 ^ 1 t\cdot d\left(\frac{1}{1 - n}\cdot\frac{1}{(1 + t ^ 4) ^ {n - 1}}\right) \]

然后设 \(J_n = \int_0 ^ 1 td((1 + t ^ 4) ^ {1 - n})\),分部积分:

\[J_n = [t(1 + t ^ 4) ^ {1 - n}]_0^1 - \int_0^1\frac{1}{(1 + t ^ 4) ^ {n - 1}}dt = 2 ^ {1 - n} - u_{n - 1} \]

所以,得到递推式 \(u_{n + 1} = u_n + \frac{1}{4n}(2 ^ {-n} - u_n) \Rightarrow \frac{u_n}{n} = 4(u_n - u_{n + 1}) + \frac{1}{n2^n}\).

所以 \(\sum\limits_{n = 1} ^ {\infty} \frac{u_n}{n} = \lim\limits_{n\rightarrow \infty}4(u_1 - u_{n + 1}) + \sum\limits_{k = 1} ^ n \frac{1}{k 2 ^ k}\).

所以只需要求出 \(u_1\)\(\sum\limits_{n = 1} ^ {\infty} \frac{1}{n2^n}\) 即可。

根据 \(\ln(1 + x)\) 的泰勒展开式,\(\sum\limits_{n = 1} ^ {\infty} \frac{1}{n2^n} = -\ln(1 - \frac{1}{2}) = \ln 2\).

然后求 \(u_1 = \int_0^1 \frac{dt}{1 + t ^ 4}\),然后使用组合积分法。设 \(P = \int_0^1\frac{1 + t ^ 2}{1 + t ^ 4} dt, Q = \int_0^1 \frac{1-t^2}{1+t^2}dt, u_1 = \frac{P + Q}{2}\).

\[P = \int_0^1 \frac{1 + \frac{1}{t ^ 2}}{t ^ 2 + \frac{1}{t^2}} dt = \int_0 ^ 1\frac{d(t - \frac{1}{t})}{(t - \frac{1}{t}) ^ 2 + 2} = \frac{1}{\sqrt 2}\int_0^1 \frac{d(\frac{t - \frac{1}{t}}{\sqrt 2})}{(\frac{t - \frac{1}{t}}{\sqrt 2}) ^ 2 + 1} = \left[\frac{\arctan \left(\frac{t - \frac{1}{t}}{\sqrt 2}\right)}{\sqrt 2}\right]_0^1 \]

所以 \(P = \frac{\pi}{2\sqrt 2}\).

\[Q = \int_0^1 \frac{\frac{1}{t ^ 2} - 1}{t ^ 2 + \frac{1}{t ^ 2}}dt = \int_0^1 \frac{d(-t-\frac{1}{t})}{(-t-\frac{1}{t})^2 - 2} = \left[\frac{1}{2\sqrt 2}\ln\frac{t + \frac{1}{t} + \sqrt 2}{t + \frac{1}{t} - \sqrt 2}\right]_0^1 = \frac{1}{\sqrt{2}} \ln(1 + \sqrt 2) \]

所以 \(u_1\) 就算出来了。

最后答案就把这些数值相加即可,为 \(\ln 2 + \frac{\pi}{\sqrt 2} + \sqrt 2\ln (1 + \sqrt 2)\).

posted @ 2025-09-09 21:05  AxDea  阅读(11)  评论(0)    收藏  举报