AP Calculus——考前的最后复习
不太常用的 导数表 & 积分表
- \(\tan'x = \sec^2 x\)
- \(\cot'x = - \csc^2 x\)
- \(\sec'x = \sec x \tan x\)
- \(\csc'x = - \csc x \cot x\)
- \(\text{arcsec}'x = \frac 1 {|x| \sqrt{x^2 - 1}}\)
- \(\text{arccsc}'x = - \frac 1 {|x| \sqrt{x^2 - 1}}\)
为方便,以下省略 \(+C\)。
- \(\int \tan x dx = -\ln |\cos x| = \ln |\sec x|\)
- \(\int \cot x dx = -\ln |\sin x|\)
- \(\int \sec^2 x dx = \tan x\)
- \(\int \csc^2 x dx = - \cot x\)
- \(\int \sec x \tan x dx = \sec x\)
- \(\int \csc x \cot x dx = - \csc x\)
- \(\int \frac 1 {x \sqrt{x^2 - 1}} dx = \text{arcsec} |x|\)
Critical / Extremum / Inflection Point
| 为 \(0\) 或不存在 | 两侧邻域内异号 | |
|---|---|---|
| 一阶导 | Critical Point | Extremum Point |
| 二阶导 | (Candidate Inflection Point) | Inflection Point |
"异号" 是比 "为 \(0\) 或不存在" 更强的条件,所以右侧必然属于左侧。
IVT EVT MVT
IVT - Intermediate Value Theorem
- 条件:\(f\) 在 \([l,r]\) 上连续。
- 结论:对于任意 \(f(l)\) 和 \(f(r)\) 之间的 \(k\),存在 \(c \in (l,r)\) 使得 \(f(c) = k\)。
EVT - Extreme Value Theorem
- 条件:\(f\) 在 \([l,r]\) 上连续。
- 结论:\(f\) 在 \([l,r]\) 上存在全局最大值和全局最小值。
MVT - Mean Value Theorem
- 条件:\(f\) 在 \([l,r]\) 上连续,\((l,r)\) 上可导。(闭区间连续,开区间可导)
- 结论:存在 \(c \in (l,r)\) 使得 \(f'(c) = \frac {f(r) - f(l)} {r - l}\)。(切线斜率等于割线斜率)
ODE
Exponential Growth & Decay
\[y' = ky
\]
\[\boxed{
y = C e^{kt}
}\]
Restricted Growth & Decay
\[y' = k (A - y)
\]
\[\boxed{
y = A - C e^{-kt}
}\]
Logistic Growth
\[y' = k y (A - y)
\]
\[\boxed{
y = \frac A {1 + C e^{-Akt}}
}\]
When applied to populations, \(A\) is called the carrying capacity or the maximum sustainable population.
- \(y < \frac A 2 \implies y'' > 0\)
- \(y = \frac A 2 \implies y'' = 0\)
- \(y > \frac A 2 \implies y'' < 0\)
Series - 牢九门
复制自《数列敛散性牢九门》
Geometric Series Test
\[|r| < 1 \iff \sum a r^n \text{ converges}
\]
\(p\)-Series Test
\[p > 1 \iff \sum \frac 1 {n^p} \text{ converges}
\]
\(n\)th Term Test
\[\lim\limits_{n \to \infty} a_n \ne 0 \implies \sum a_n \text{ diverges}
\]
Integral Test
(Nonnegative series)
If \(f(x)\) is a continuous, positive, decreasing function and \(f(n) = a_n\), then
\[\int_1^\infty f(x) dx \text{ and } \sum a_n \text{ both converge or diverge}
\]
Comparison Test
(Nonnegative series)
\[\sum b_n \text{ converges} \land a_n \le b_n \implies \sum a_n \text{ converges}
\]
\[\sum b_n \text{ diverges} \land a_n \ge b_n \implies \sum a_n \text{ diverges}
\]
Limit Comparison Test
(Nonnegative series)
- Case 1: \(\lim\limits_{n \to \infty} \frac {a_n} {b_n} = L\) where \(0 < L < \infty\)
\[\sum a_n \text{ and } \sum b_n \text{ both converge or diverge}
\]
- Case 2: \(\lim\limits_{n \to \infty} \frac {a_n} {b_n} = 0\)
\[\sum b_n \text{ converges} \implies \sum a_n \text{ converges}
\]
- Case 3: \(\lim\limits_{n \to \infty} \frac {a_n} {b_n} = \infty\)
\[\sum b_n \text{ diverges} \implies \sum a_n \text{ diverges}
\]
Ratio Test
(Nonnegative series)
Let \(\lim\limits_{n \to \infty} \frac {a_{n+1}} {a_n} = L\) if exists.
\[L < 1 \implies \sum a_n \text{ converges}
\]
\[L > 1 \implies \sum a_n \text{ diverges}
\]
Root Test
(Nonnegative series)
Let \(\lim\limits_{n \to \infty} \sqrt[n]{a_n} = L\) if exists.
\[L < 1 \implies \sum a_n \text{ converges}
\]
\[L > 1 \implies \sum a_n \text{ diverges}
\]
Alternating Series Test
(\(a_n \ge 0\))
\[\begin{cases}
a_{n+1} < a_n \\
\lim\limits_{n \to \infty} a_n = 0 \\
\end{cases} \implies \sum (-1)^n a_n \text{ converges}\]
浙公网安备 33010602011771号