数列敛散性牢九门
Geometric Series Test
\[|r| < 1 \iff \sum a r^n \text{ converges}
\]
\(p\)-Series Test
\[p > 1 \iff \sum \frac 1 {n^p} \text{ converges}
\]
\(n\)th Term Test
\[\lim\limits_{n \to \infty} a_n \ne 0 \implies \sum a_n \text{ diverges}
\]
Integral Test
(Nonnegative series)
If \(f(x)\) is a continuous, positive, decreasing function and \(f(n) = a_n\), then
\[\int_1^\infty f(x) dx \text{ and } \sum a_n \text{ both converge or diverge}
\]
Comparison Test
(Nonnegative series)
\[\sum b_n \text{ converges} \land a_n \le b_n \implies \sum a_n \text{ converges}
\]
\[\sum b_n \text{ diverges} \land a_n \ge b_n \implies \sum a_n \text{ diverges}
\]
Limit Comparison Test
(Nonnegative series)
- Case 1: \(\lim\limits_{n \to \infty} \frac {a_n} {b_n} = L\) where \(0 < L < \infty\)
\[\sum a_n \text{ and } \sum b_n \text{ both converge or diverge}
\]
- Case 2: \(\lim\limits_{n \to \infty} \frac {a_n} {b_n} = 0\)
\[\sum b_n \text{ converges} \implies \sum a_n \text{ converges}
\]
- Case 3: \(\lim\limits_{n \to \infty} \frac {a_n} {b_n} = \infty\)
\[\sum b_n \text{ diverges} \implies \sum a_n \text{ diverges}
\]
Ratio Test
(Nonnegative series)
Let \(\lim\limits_{n \to \infty} \frac {a_{n+1}} {a_n} = L\) if exists.
\[L < 1 \implies \sum a_n \text{ converges}
\]
\[L > 1 \implies \sum a_n \text{ diverges}
\]
Root Test
(Nonnegative series) 应该是吧,书上没说
Let \(\lim\limits_{n \to \infty} \sqrt[n]{a_n} = L\) if exists.
\[L < 1 \implies \sum a_n \text{ converges}
\]
\[L > 1 \implies \sum a_n \text{ diverges}
\]
Alternating Series Test
(\(a_n \ge 0\))
\[\begin{cases}
a_{n+1} < a_n \\
\lim\limits_{n \to \infty} a_n = 0 \\
\end{cases} \implies \sum (-1)^n a_n \text{ converges}\]
浙公网安备 33010602011771号